
Ontology Engineering 



Topics 
•  This lecture: 

–  Ontologies – a quick recap 

–  What are they? 

–  What type of ontologies are out there? 

–  What are they used for?  

–  Ontology Building Methodologies 

–  Life-cycle 

–  Existing methodologies 

•  Next lecture: 

–  Design Patterns 



Ontologies 
•  Definition 

–  “a formal, explicit specification of a shared conceptualisation” 
Gruber  

•  And in English … 

–  An ontology is the combination of concepts and relationships 
required to model a knowledge domain in a human and machine 
understandable format 

Machine 
readable 

Representation of concepts 
 and constraints is  
explicitly defined 

ontology should represent  
a shared view of the domain 

modelling the concepts  
and relations of the domain 



Example: FOAF Ontology 

http://www.foaf-project.org/ 



When to Use an Ontology? 

•  Knowledge management 

–  Control vocabulary 

–  Making domain assumptions more explicit 

–  Separate the metadata structure from the data itself 

–  Change in metadata does not necessarily require change in the data 

•  Knowledge sharing 

–  The clear model of your data enables other machines and people to 
understand it, and thus use and reuse it 

•  Knowledge integration 

–  Ontologies can bridge between several data sources 

•  Knowledge analysis 

–  Using a rich data model enables more complex analysis to be made on 
the data (eg for knowledge discovery) 



Type of Ontologies 

•  There are four main type of ontologies: 

– Representation ontologies 

– General or upper-level ontologies 

– Domain ontologies 

– Application ontologies 



Representation ontologies 

•  Describe low level primitive 
representations 

–  Such as semantic web 
languages 

•  Example ontologies: 

–  OWL, RDF, RDFS 

•  Usual size: small, a few 
dozens of concepts and 
relations 

Section of the OWL ontology 



General or upper-level ontologies 

•  Describe high-level, abstract, concepts 

•  Usually domain independent 

–  Can be used as part of other ontologies 

•  Example ontologies: 

–  Cyc: commonsense ontology  

•  Hundreds of thousands of concepts 
–  WordNet:  English lexicon  

•  Over 150K concepts 
–  SUMO: Suggested Upper Merged Ontology 

•  Around 10K concepts 

•  Tend to come in large sizes 



Examples of an upper-level 
ontology 

a tiny section 
of Cyc 



Domain ontologies 

•  Describe a particular domain extensively  

•  Domain dependent by definition 

•  Example ontologies: 

–  GO: Gene Ontology 

•  Roughly 25K concepts 

–  CIDOC CRM: for cultural heritage 

•  Roughly 100 concepts 

–  FMA: Foundational Model of Anatomy 

•  Around 75K concepts 



Example of a domain 
ontology 

•  CRM: domain of 
museum artifacts  



Another domain 
ontology  

•  AKT Reference ontology 

–  Designed for the domain of 
academia 

–  Contains an upper layer  



Application ontologies 

•  Mainly designed to answer to 
the needs of an application 

•  Scaled and focused to fit the 
application domain 
requirements 

•  Example ontologies: 

–  FOAF: Friend of a Friend 
ontology 

•  ~ a dozen concepts 
–  ESWC06: for conference 

metadata 

•  ~ 80 concepts, including 
FOAF 



Ontology Building 
Methodologies 



Ontology Building Methodologies 

•  No standard methodology for ontology construction 

•  There exists a number of methodologies and best practices 

•  The following life cycle stages are usually shared by the 
methodologies: 

–  Specification  - scope and purpose 

–  Conceptualisation  - determining the concepts and relations 

–  Formalisation  - axioms, restrictions 

–  Implementation  - using some ontology editing tool 

–  Evaluation  - measure how well you did 

–  Documentation  - document what you did 



Ontology Development  
Life-Cycle 

– Specification 

– Conceptualisation 

– Formalisation 

–  Implementation 

– Evaluation 

– Documentation 



Specification 

•  Specifying the ontology’s purpose and scope  

– Why building this ontology? 

– What will this ontology be used for?  

– What is the domain of interest?  

•  An ontology for car sales probably don’t need to 
know much about types and prices of engine oil 

– How much detail do you need? 



Limit Your Scope 

studies_at 
Student 

Educational  
Organisation 

studied_course 

teaches teaches 
MSc 

Student 
PhD 

Student 

Course 

studies_fulltime_at 

studies_parttime_at 

graduated_from 

Student 
Educational  

Organisation 

Undergraduate 
Student 

Postgraduate 
Student 

University College 



Competency Questions 
–  What are some of the questions you need the ontology to answer 

(competency questions)? 

•  Make a list of such questions and use as a check list when designing the 
ontology 

–  They help to define scope, level of detail, evaluation, etc. 

–  The questions that you REALLY need  

•  You probably don’t need to worry about the questions that “perhaps 
someone might need to ask someday” 

–  The questions that CAN BE answered 

•  i.e. you have/can get the necessary data to answer those questions 

•  Permanent lack of some data may render parts of the ontology useless! 



Ontology Development  
Life-Cycle 

– Specification 

– Conceptualisation 

– Formalisation 

–  Implementation 

– Evaluation 

– Documentation 



Conceptualisation 
•  Identifying the concepts to include in your ontology, and 

how they relate to each other 

– This will be dependent to some extent on your defined 
scope and competency questions 

– Set unambiguous names and descriptions for those 
classes and relationships (more on this in Documentation) 

– Reach agreement 



Conceptualisation 

•  When designing an ontology, start with a drawing sheet 
or software (eg Visio, Mind Maps), or cards 



Conceptualisation 

•  Ontologies are meant to be reusable! 

–  Technology for reusing ontologies is still limited 

•  Always a good idea to check any existing models or ontologies 

–  Check your database models or off-the-shelf ontologies 

•  Check existing ontologies 

–  No need to reinvent the wheel, unless it is easier to do so! 

–  Ontology search engines 

•  Swoogle, Watson 





Ontology Development  
Life-Cycle 

– Specification 

– Conceptualisation 

– Formalisation 

–  Implementation 

– Evaluation 

– Documentation 



Formalisation 

•  Moving from a list of concepts to a formal model 

•  Define the hierarchy of concepts and relations  

•  Also note down any restrictions 

– E.g. NonProfitOrg isDisjoint from ProfitOrg 

– An email address is unique 



Building the Class Hierarchy 
•  Several approaches have been suggested to construct the class 

hierarchy: 

–  Top-down 

•  Start with the most general classes and finish with the most 
detailed classes 

–  Bottom-up 

•  Start with the most detailed classes and finish with the most 
general ones 

–  Middle-out 

•  Start with the most obvious classes  

•  Group as required 

•  Then go upwards and downwards to the more general and more 
detailed classes respectively 



Middle-Out Approach 

•  Good for controlling scope and detail 

Staff Student University 

Organisation 

affiliated_with 

studies_at 

works_at 

Research 
Staff 

Teaching 
Staff 

Undergrad 
Student 

PostGrad 
Student 

Person 



Naming Conventions 
•  Not rules, but conventions 

•  Avoid spaces and uncommon delimiters in class and relation names 

–  E.g. use PetFood or Pet_Food instead of Pet Food or Pet*Food 

•  Capitalise each word in a class name 

–  E.g. PetFood instead of Petfood or even petfood 

•  Names of relations usually start with a lowercase 

–  E.g. pet_owner, petOwner 

•  Better use singular names  

–  E.g. Pet, Person, Shop 



Class or a Relation? 

•  Is it a class or a relation?  

type of study Full time 

Part time 
Student 

PartTime 
Student 

Student 

FullTime 
Student 

  Answer: 
  It depends!  
  If the subclass doesn’t need any new relations (or restrictions), then 

consider making it a relation 



Class or an Instance? 

•  Is it a class or an instance? 

•  Answer: 

–  If it can have its own instances, then it should be a class 

–  If it can have its own subclasses, then it should be a class 

studies_at 
Student University 

John Smith Uni of Soton 



Transitivity of Class  
Hierarchy 
•  isA relation is always transitive 

– Car is a Transportation Object 

– Any instance of Car is also a 
TransportationObject 

•  isA is not the same as partOf 

isA 

isA 

Car 

Transport 
Object 

Vehicle 

partOf 

Car 

Wheel 



Tidy Your Hierarchy 

•  Avoid isA clutter! 

•  Break down your hierarchy further if you have too 
many direct subclasses of a class 

Staff 

Admin 

Lecturer 

Technician 

Professor 

Senior 
Lecturer 

Senior RF 

Research 
Fellow 

Research 
Assistant 

Lecturer 

Staff 

Admin Technician 

Senior 
Lecturer 

Researcher 

Senior RF 

Research 
Fellow Research 

Assistant 

Academic 

Professor 



Where to Point my Relation? 

•  Relations should point to the most general class 

– But not too general 

•  E.g relations pointing to Thing! 

– And not too specific 

•  E.g. relations pointing to the bottom of the 
hierarchy 



Where to Point my Relation? 

Staff 

Admin 

Lecturer 

Technician 

Senior 
Lecturer 

Researcher 

Senior RF 

Research 
Fellow 

Research 
Assistant 

Academic 

Professor 

University works_at 

Course 
teaches 

teaches 



Ontology Development  
Life-Cycle 

– Specification 

– Conceptualisation 

– Formalisation 

–  Implementation 

– Evaluation 

– Documentation 



Implementation 
–  Choose a language 

•  e.g. RDFS, OWL Lite, OWL, DL 

–  Implement it with an ontology editor 

•  e.g. Protégé, SWOOP, TopQuadrant 

–  Edit the class hierarchy 

–  Add relationships 

–  Add restrictions 

–  Select appropriate value types, cardinality, etc 

–  Apply a reasoner to check your ontology 

•  e.g. Racer, Pellet, Fact++ 



Ontology Development  
Life-Cycle 

– Specification 

– Conceptualisation 

– Formalisation 

–  Implementation 

– Evaluation 

– Documentation 



Evaluation 
•  Implementing the ontology in an ontology editor helps to get the syntax correct 

•  You can also validate your OWL ontology online using: 

–  The WonderWeb OWL validator 

•  http://www.mygrid.org.uk/OWL/Validator 

–  W3C RDF validator 

•  http://www.w3.org/RDF/Validator/  

•  Check the ontology against your competency questions 

–  Write the questions in SPARQL or in similar query languages 

–  Can you get the answers you need? 

–  Is it quick enough?  

–  Perhaps you can add additional properties or restructure the ontology to 
increase efficiency  



Ontology Development  
Life-Cycle 

– Specification 

– Conceptualisation 

– Formalisation 

–  Implementation 

– Evaluation 

– Documentation 



Documentation 
•  Documenting the design and implementation rational is crucial for 

future usability and understanding of the ontology 

–  Rational, design options, assumptions, decisions, examples, etc. 

•  Skuce (1995) proposes a format for documenting ontological 
assumptions 

–  Layer 1: Class and relation assumptions 

–  Conceptual assumptions (C) 

–  Terminological assumptions (T) 

–  Definitional assumption (D) 

–  Examples (E) 



Documentation 



Ontology Engineering  Methodologies 
•  TOVE (Gruninger and Fox 1995) 

–  Focus on competency questions 

•  ENTERPRISE (Uschold and King 1995) 

–  Focus on conceptualisation  

•  METHONTOLOGY (Fernández and Gómez-Pérez 1997) 

–  Inspired by IEEE Standard software development life cycle 

–  Stresses the iterative process and evolution of prototypes 



TOVE 
•  Capture motivating scenarios 

–  E.g. what’s the application 

•  Formulate competency questions and desired answers   

–  What questions the ontology needs to answer to satisfy the 
scenarios 

•  Specify and formalise the terminology 

•  Formalise the competency questions 

•  Specify axioms and definitions  

•  Evaluate ontology against the competency questions 



ENTERPRISE 
•  Identify purpose 

–  Why build it, what for, who are the users 

•  Build the ontology 

–  Ontology capture 

•  Identify concepts, relations, labels using a middle-out approach 

–  Ontology implementation 

–  Integrate existing ontologies 

•  Evaluation 

–  Check against the requirements, competency questions, real-world 
use 

•  Documentation 



METHONTOLOGY 
•  Management activities 

–  Scheduling, control, and quality assurance 

•  Development activities 

–  Pre-development 

•  Scenarios, feasibility study 

–  Development 

•  Specification, conceptualisation, formalisation, implementation 

–  Post-development 

•  Maintenance 

•  Support activities 

–  Same time as development  

–  Knowledge acquisition, evaluation, mapping and merging with 
other ontologies, documentation 



METHONTOLOGY 



Summary 
•  Ontology construction is an iterative process 

–  You build the ontology, try to use it, fix errors, extend, use again, and 
so on. 

•  There is no single correct model for your domain 

–  The same domain may be modelled in several ways 

•  Following best practices helps to build good ontologies 

–  Well scoped, documented, structured 

•  Reuse existing ontologies if possible 

–  Check your database models and existing ontologies 

–  Reuse or learn from existing representations 

–  Most ontology editing tools don’t provide good support for reuse yet 



Common Pitfalls 
•  Over scaling and complicating your ontology 

–  Need to learn when to stop expanding the ontology 

•  Lack of documentation 

–  For the design rational, vocabulary and structure decisions, intended use, 
etc.  

•  Redundancy  

–  Increase chances of inconsistencies and maintenance cost 

•  Using ambiguous terminology  

–  Others might misinterpret your ontology 

–  Mapping to other ontologies will be more difficult 


