
Ontology Engineering

Topics
•  This lecture:

–  Ontologies – a quick recap

–  What are they?

–  What type of ontologies are out there?

–  What are they used for?

–  Ontology Building Methodologies

–  Life-cycle

–  Existing methodologies

•  Next lecture:

–  Design Patterns

Ontologies
•  Definition

–  “a formal, explicit specification of a shared conceptualisation”
Gruber

•  And in English …

–  An ontology is the combination of concepts and relationships
required to model a knowledge domain in a human and machine
understandable format

Machine
readable

Representation of concepts
 and constraints is
explicitly defined

ontology should represent
a shared view of the domain

modelling the concepts
and relations of the domain

Example: FOAF Ontology

http://www.foaf-project.org/

When to Use an Ontology?

•  Knowledge management

–  Control vocabulary

–  Making domain assumptions more explicit

–  Separate the metadata structure from the data itself

–  Change in metadata does not necessarily require change in the data

•  Knowledge sharing

–  The clear model of your data enables other machines and people to
understand it, and thus use and reuse it

•  Knowledge integration

–  Ontologies can bridge between several data sources

•  Knowledge analysis

–  Using a rich data model enables more complex analysis to be made on
the data (eg for knowledge discovery)

Type of Ontologies

•  There are four main type of ontologies:

– Representation ontologies

– General or upper-level ontologies

– Domain ontologies

– Application ontologies

Representation ontologies

•  Describe low level primitive
representations

–  Such as semantic web
languages

•  Example ontologies:

–  OWL, RDF, RDFS

•  Usual size: small, a few
dozens of concepts and
relations

Section of the OWL ontology

General or upper-level ontologies

•  Describe high-level, abstract, concepts

•  Usually domain independent

–  Can be used as part of other ontologies

•  Example ontologies:

–  Cyc: commonsense ontology

•  Hundreds of thousands of concepts
–  WordNet: English lexicon

•  Over 150K concepts
–  SUMO: Suggested Upper Merged Ontology

•  Around 10K concepts

•  Tend to come in large sizes

Examples of an upper-level
ontology

a tiny section
of Cyc

Domain ontologies

•  Describe a particular domain extensively

•  Domain dependent by definition

•  Example ontologies:

–  GO: Gene Ontology

•  Roughly 25K concepts

–  CIDOC CRM: for cultural heritage

•  Roughly 100 concepts

–  FMA: Foundational Model of Anatomy

•  Around 75K concepts

Example of a domain
ontology

•  CRM: domain of
museum artifacts

Another domain
ontology

•  AKT Reference ontology

–  Designed for the domain of
academia

–  Contains an upper layer

Application ontologies

•  Mainly designed to answer to
the needs of an application

•  Scaled and focused to fit the
application domain
requirements

•  Example ontologies:

–  FOAF: Friend of a Friend
ontology

•  ~ a dozen concepts
–  ESWC06: for conference

metadata

•  ~ 80 concepts, including
FOAF

Ontology Building
Methodologies

Ontology Building Methodologies

•  No standard methodology for ontology construction

•  There exists a number of methodologies and best practices

•  The following life cycle stages are usually shared by the
methodologies:

–  Specification - scope and purpose

–  Conceptualisation - determining the concepts and relations

–  Formalisation - axioms, restrictions

–  Implementation - using some ontology editing tool

–  Evaluation - measure how well you did

–  Documentation - document what you did

Ontology Development
Life-Cycle

– Specification

– Conceptualisation

– Formalisation

–  Implementation

– Evaluation

– Documentation

Specification

•  Specifying the ontology’s purpose and scope

– Why building this ontology?

– What will this ontology be used for?

– What is the domain of interest?

•  An ontology for car sales probably don’t need to
know much about types and prices of engine oil

– How much detail do you need?

Limit Your Scope

studies_at
Student

Educational
Organisation

studied_course

teaches teaches
MSc

Student
PhD

Student

Course

studies_fulltime_at

studies_parttime_at

graduated_from

Student
Educational

Organisation

Undergraduate
Student

Postgraduate
Student

University College

Competency Questions
–  What are some of the questions you need the ontology to answer

(competency questions)?

•  Make a list of such questions and use as a check list when designing the
ontology

–  They help to define scope, level of detail, evaluation, etc.

–  The questions that you REALLY need

•  You probably don’t need to worry about the questions that “perhaps
someone might need to ask someday”

–  The questions that CAN BE answered

•  i.e. you have/can get the necessary data to answer those questions

•  Permanent lack of some data may render parts of the ontology useless!

Ontology Development
Life-Cycle

– Specification

– Conceptualisation

– Formalisation

–  Implementation

– Evaluation

– Documentation

Conceptualisation
•  Identifying the concepts to include in your ontology, and

how they relate to each other

– This will be dependent to some extent on your defined
scope and competency questions

– Set unambiguous names and descriptions for those
classes and relationships (more on this in Documentation)

– Reach agreement

Conceptualisation

•  When designing an ontology, start with a drawing sheet
or software (eg Visio, Mind Maps), or cards

Conceptualisation

•  Ontologies are meant to be reusable!

–  Technology for reusing ontologies is still limited

•  Always a good idea to check any existing models or ontologies

–  Check your database models or off-the-shelf ontologies

•  Check existing ontologies

–  No need to reinvent the wheel, unless it is easier to do so!

–  Ontology search engines

•  Swoogle, Watson

Ontology Development
Life-Cycle

– Specification

– Conceptualisation

– Formalisation

–  Implementation

– Evaluation

– Documentation

Formalisation

•  Moving from a list of concepts to a formal model

•  Define the hierarchy of concepts and relations

•  Also note down any restrictions

– E.g. NonProfitOrg isDisjoint from ProfitOrg

– An email address is unique

Building the Class Hierarchy
•  Several approaches have been suggested to construct the class

hierarchy:

–  Top-down

•  Start with the most general classes and finish with the most
detailed classes

–  Bottom-up

•  Start with the most detailed classes and finish with the most
general ones

–  Middle-out

•  Start with the most obvious classes

•  Group as required

•  Then go upwards and downwards to the more general and more
detailed classes respectively

Middle-Out Approach

•  Good for controlling scope and detail

Staff Student University

Organisation

affiliated_with

studies_at

works_at

Research
Staff

Teaching
Staff

Undergrad
Student

PostGrad
Student

Person

Naming Conventions
•  Not rules, but conventions

•  Avoid spaces and uncommon delimiters in class and relation names

–  E.g. use PetFood or Pet_Food instead of Pet Food or Pet*Food

•  Capitalise each word in a class name

–  E.g. PetFood instead of Petfood or even petfood

•  Names of relations usually start with a lowercase

–  E.g. pet_owner, petOwner

•  Better use singular names

–  E.g. Pet, Person, Shop

Class or a Relation?

•  Is it a class or a relation?

type of study Full time

Part time
Student

PartTime
Student

Student

FullTime
Student

  Answer:
  It depends!
  If the subclass doesn’t need any new relations (or restrictions), then

consider making it a relation

Class or an Instance?

•  Is it a class or an instance?

•  Answer:

–  If it can have its own instances, then it should be a class

–  If it can have its own subclasses, then it should be a class

studies_at
Student University

John Smith Uni of Soton

Transitivity of Class
Hierarchy
•  isA relation is always transitive

– Car is a Transportation Object

– Any instance of Car is also a
TransportationObject

•  isA is not the same as partOf

isA

isA

Car

Transport
Object

Vehicle

partOf

Car

Wheel

Tidy Your Hierarchy

•  Avoid isA clutter!

•  Break down your hierarchy further if you have too
many direct subclasses of a class

Staff

Admin

Lecturer

Technician

Professor

Senior
Lecturer

Senior RF

Research
Fellow

Research
Assistant

Lecturer

Staff

Admin Technician

Senior
Lecturer

Researcher

Senior RF

Research
Fellow Research

Assistant

Academic

Professor

Where to Point my Relation?

•  Relations should point to the most general class

– But not too general

•  E.g relations pointing to Thing!

– And not too specific

•  E.g. relations pointing to the bottom of the
hierarchy

Where to Point my Relation?

Staff

Admin

Lecturer

Technician

Senior
Lecturer

Researcher

Senior RF

Research
Fellow

Research
Assistant

Academic

Professor

University works_at

Course
teaches

teaches

Ontology Development
Life-Cycle

– Specification

– Conceptualisation

– Formalisation

–  Implementation

– Evaluation

– Documentation

Implementation
–  Choose a language

•  e.g. RDFS, OWL Lite, OWL, DL

–  Implement it with an ontology editor

•  e.g. Protégé, SWOOP, TopQuadrant

–  Edit the class hierarchy

–  Add relationships

–  Add restrictions

–  Select appropriate value types, cardinality, etc

–  Apply a reasoner to check your ontology

•  e.g. Racer, Pellet, Fact++

Ontology Development
Life-Cycle

– Specification

– Conceptualisation

– Formalisation

–  Implementation

– Evaluation

– Documentation

Evaluation
•  Implementing the ontology in an ontology editor helps to get the syntax correct

•  You can also validate your OWL ontology online using:

–  The WonderWeb OWL validator

•  http://www.mygrid.org.uk/OWL/Validator

–  W3C RDF validator

•  http://www.w3.org/RDF/Validator/

•  Check the ontology against your competency questions

–  Write the questions in SPARQL or in similar query languages

–  Can you get the answers you need?

–  Is it quick enough?

–  Perhaps you can add additional properties or restructure the ontology to
increase efficiency

Ontology Development
Life-Cycle

– Specification

– Conceptualisation

– Formalisation

–  Implementation

– Evaluation

– Documentation

Documentation
•  Documenting the design and implementation rational is crucial for

future usability and understanding of the ontology

–  Rational, design options, assumptions, decisions, examples, etc.

•  Skuce (1995) proposes a format for documenting ontological
assumptions

–  Layer 1: Class and relation assumptions

–  Conceptual assumptions (C)

–  Terminological assumptions (T)

–  Definitional assumption (D)

–  Examples (E)

Documentation

Ontology Engineering Methodologies
•  TOVE (Gruninger and Fox 1995)

–  Focus on competency questions

•  ENTERPRISE (Uschold and King 1995)

–  Focus on conceptualisation

•  METHONTOLOGY (Fernández and Gómez-Pérez 1997)

–  Inspired by IEEE Standard software development life cycle

–  Stresses the iterative process and evolution of prototypes

TOVE
•  Capture motivating scenarios

–  E.g. what’s the application

•  Formulate competency questions and desired answers

–  What questions the ontology needs to answer to satisfy the
scenarios

•  Specify and formalise the terminology

•  Formalise the competency questions

•  Specify axioms and definitions

•  Evaluate ontology against the competency questions

ENTERPRISE
•  Identify purpose

–  Why build it, what for, who are the users

•  Build the ontology

–  Ontology capture

•  Identify concepts, relations, labels using a middle-out approach

–  Ontology implementation

–  Integrate existing ontologies

•  Evaluation

–  Check against the requirements, competency questions, real-world
use

•  Documentation

METHONTOLOGY
•  Management activities

–  Scheduling, control, and quality assurance

•  Development activities

–  Pre-development

•  Scenarios, feasibility study

–  Development

•  Specification, conceptualisation, formalisation, implementation

–  Post-development

•  Maintenance

•  Support activities

–  Same time as development

–  Knowledge acquisition, evaluation, mapping and merging with
other ontologies, documentation

METHONTOLOGY

Summary
•  Ontology construction is an iterative process

–  You build the ontology, try to use it, fix errors, extend, use again, and
so on.

•  There is no single correct model for your domain

–  The same domain may be modelled in several ways

•  Following best practices helps to build good ontologies

–  Well scoped, documented, structured

•  Reuse existing ontologies if possible

–  Check your database models and existing ontologies

–  Reuse or learn from existing representations

–  Most ontology editing tools don’t provide good support for reuse yet

Common Pitfalls
•  Over scaling and complicating your ontology

–  Need to learn when to stop expanding the ontology

•  Lack of documentation

–  For the design rational, vocabulary and structure decisions, intended use,
etc.

•  Redundancy

–  Increase chances of inconsistencies and maintenance cost

•  Using ambiguous terminology

–  Others might misinterpret your ontology

–  Mapping to other ontologies will be more difficult

