QUESTION

- (a) Describe briefly some features of a computer implementation of the network simplex method that would improve the efficiency of a standard version of the algorithm.
- (b) Show that the following linear programming problem can be formulated as a minimum cost network flow problem.

Minimize
$$z = 8x_1 + 7x_2 + 2x_3 + 6x_4 + 2x_5 + 6x_6 + 5x_7 + 8x_8 + 7x_9 + 9x_{10} + 8x_{11}$$

subject to $x_1, \dots, x_{11} \ge 0$
 $x_1 + x_2 + x_3 = 20$
 $x_3 + x_4 = 16$
 $x_4 + x_5 = 25$
 $x_6 + x_7 + x_8 = 10$
 $x_8 + x_9 + x_{10} = 30$
 $x_{10} + x_{11} = 32$
 $x_1 + x_6 \le 23$

Starting with a solution in which x_2 , x_4 , x_5 , x_7 , x_9 and x_{11} take positive values, and the last constraint is satisfied as a strict inequality, use the network simplex method to solve the problem.

ANSWER

- (a) The main points are:
 - compute dual variables by updating their values from the previous iteration, rather than performing a complete recalculation
 - compute reduced costs for a subset of arcs, and if there are negative reduced costs, then choose the entering arc from this subset.
- (b) The constraints can be written as

$$x_{1} + x_{2} + x_{3} = 20$$

$$-x_{3} - x_{4} = -16$$

$$x_{4} + x_{5} = 25$$

$$x_{6} + x_{7} + x_{8} = 10$$

$$-x_{8} - x_{9} + x_{10} = -30$$

$$x_{10} + x_{11} = 32$$

$$-x_{1} - x_{6} - s = -23$$

$$-x_{2} - x_{5} - x_{7} + x_{9} - x_{11} + s = -18$$

where s is a slack variable, and the last redundant constraint is deduced from the others.

 $\theta = 16$ leaving arc (3,2)

Non-basic	$y_i + c_{ij} - y_j$
(1,7)	1
(3,2)	9
(4,5)	-4
(4,7)	1
(6,5)	-6

Entering arc (6,5)

Leaving arc (8,5)

Non-basic $y_i + c_{ij} - y)j$ (1,7) 1

- (1,7) (3,2)
 - 9

- (4,5)(4,7)
- 2
- (8,5)
- 1 6

Thus we have an optimal solution.

$$x_3 = 16$$
 $x_2 = 4$ $x_5 = 25$ $x_{11} = 2$ $x_{10} = 30$ $x_7 = 10$ $x_1 = x_4 = x_6 = x_8 = x_9 = 0$ $z = 446$