Question

Write the following initial value problems in the form of an integral equation and hence find the solution using Picard iteration.

(a)
$$y' = y$$
 $y(0) = 1$

(b)
$$y' = y^2$$
 $y(0) = 1$

(c)
$$y' = 2x(1+y)$$
 $y(0) = 0$

Answer

(a)
$$y' = y$$
 $y(0) = 1$ (1)

The integral equation is
$$y(x) - 1 = \int_0^x y(t) dt$$
 (2)

Iteration
$$y_{n+1}(x) = 1 + \int_0^x y(t) dt$$
, $y_0 = 1$

Hence,

$$y_1(x) = 1 + \int_0^x dt = 1 + x$$

$$y_2(x) = 1 + \int_0^x (1+t) dt = 1 + x + \frac{1}{2}x^2$$

$$y_3(x) = 1 + \int_0^x (1+x+\frac{1}{2}x^2) dt = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$$

This suggests

$$y_n(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!}$$

Prove this by induction:

True for n = 1.

Suppose true for n then

$$y_{n+1}(x) = 1 + \int_0^x (1 + t + \frac{t^2}{2} + \dots + \frac{t^n}{n!}) dt$$
$$= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n+1}}{(n+1)!}$$

So true for $n \Rightarrow$ true for n + 1.

Since it was true for n = 1 then by the induction hypothesis it is true for all $n \in \mathbb{N}$.

As
$$n \to \infty$$
 $y_n(x) \to y(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^x$
(You can check that $y = e^x$ satisfies (1))

(b)
$$y' = y^2$$
 $y(0) = 1$ (1)

The integral equation is
$$y(x) - 1 = \int_0^x y^2(t) dt$$
 (2)

Iteration $y_{n+1}(x) = 1 + \int_0^x y^2(t) dt$, $y_0 = 1$

Hence,

$$y_1(x) = 1 + \int_0^x dt = 1 + x$$

$$y_2(x) = 1 + \int_0^x (1+t)^2 dt$$

$$= 1 + x + x^2 + \frac{x^3}{3}$$

$$y_3(x) = 1 + \int_0^x (1+t+t^2 + \frac{t^3}{3})^2 dt$$

$$= 1 + \int_0^x (1+2t+3t^2 + \frac{t^3}{3})^2 dt$$

$$= 1 + x + x^2 + x^3 + \frac{2}{3}x^4 + \frac{1}{3}x^5 + \frac{1}{9}x^6 + \frac{x^7}{63}$$

this suggests

$$y_n(x) = (1 + x + x^2 + ... + x^n)p_n(x)$$
 (3)

where $p_n(x)$ is some polynomial.

If $y_n(x)$ has the form (3) then:

$$\begin{array}{lll} y_{n+1}(x) & = & 1+\int_0^x (1+t+t^2+\ldots+t^n+t^{n+1}p_n(t))^2\,dt \\ \\ & = & 1+\int_0^x (1+2t+3t^2+\ldots+nt^n+t^{n+1}q_n(t))\,dt \\ \\ & & (\text{where }q_n(t)\text{ is some polynomial}) \\ \\ & = & 1+x+x^2+\ldots+x^{n+1}+x^{n+2}r_{n+1}(x) \\ \\ & & (\text{where }r_n(x)\text{ is some polynomial}) \end{array}$$

Hence it seems reasonable to suppose that as $n \to \infty$

$$y_n(x) \to y(x) = 1 + x + x^2 + x^3 + \dots = (1 - x)^{-1}$$

In fact one can prove this for |x| < 1 by looking more carefully at the remainder term.

One can check that $y = \frac{1}{1-x}$ is a solution of (1).

(c)
$$y' = 2x(1+y)$$
 $y(0) = 0$ (1)

The integral equation is
$$y(x) = \int_0^x 2t(1+y(t)) dt$$
 (2)

Iteration:

$$y_{n+1}(x) = \int_0^x t(1+y_n(t)) dt \quad y_0 = 0$$

$$y_1(x) = \int_0^x 2t dt = x^2$$

$$y_2(x) = \int_0^x 2t(1+t^2) dt$$

$$= x^2 + \frac{x^4}{2}$$

$$y_3(x) = \int_0^x 2t(1+t^2 + \frac{t^4}{2}) dt$$

$$= x^2 + \frac{x^4}{2} + \frac{x^6}{6}$$

This suggests

$$y_n(x) = x^2 + \frac{x^4}{2!} + \dots + \frac{x^{2n}}{n!}$$
 (3)

If we assume this is true then

$$y_{n+1}(x) = \int_0^x 2t(1+t^2+\frac{t^4}{2!}+\dots+\frac{t^{2n}}{n!}) dt$$

$$= (2t+2t^3+t^5+\dots+\frac{2t^{2n+1}}{(n+1)!}) dt$$

$$= x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\dots+\frac{x^{2(n+1)}}{(n+1)!}$$

Hence it is true for $n \Rightarrow$ true for n + 1.

Also true for n = 1 so by induction $y_n(x) = x^2 + \frac{x^4}{2!} + ... + \frac{x^{2n}}{n!}$

As
$$n \to \infty$$
 $y_n(x) \to y(x) = x^2 + \frac{x^4}{2!} + \dots = e^{x^2} - 1$

and one can check that $y = e^{x^2} - 1$ is a solution of (1)