Question

Let **a**, **b** and **r** be vectors with $\mathbf{a} \cdot \mathbf{b} \neq 0$, and let t be a scalar. Show that the equation:

$$\mathbf{a} \times \mathbf{r} = \mathbf{a} + t\mathbf{b}$$

can be satisfied only if

$$t = -\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}.$$

Put this value of t into the equation and deduce that \mathbf{r} must have the form:

$$\mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b}} + \left(\frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}.$$

Answer

$$\mathbf{a} \times \mathbf{r} = \mathbf{a} + t\mathbf{b}$$
 (*)

Take the dot products of both sides of (*) with a:

$$(\mathbf{a} \times \mathbf{r}) \cdot \mathbf{a} = (\mathbf{a} + t\mathbf{b}) \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{a} + t\mathbf{b} \cdot \mathbf{a}$$

and since $(\mathbf{a} \times \mathbf{r}) \cdot \mathbf{a} = 0$ we have $0 = \mathbf{a} \cdot \mathbf{a} + t\mathbf{b} \cdot \mathbf{a}$ or $\mathbf{a} \cdot \mathbf{b}t = -\mathbf{a} \cdot \mathbf{a}$

Dividing by the scalar $\mathbf{a} \cdot \mathbf{b}$ gives $t = \frac{-\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}$

Substitute this value of t into (*) to obtain:

$$\mathbf{a} \times \mathbf{r} = \mathbf{a} + \left(\frac{-\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}\right) \mathbf{b}$$
 (**)

Take the cross product of both sides of (**) with a:

$$\begin{aligned} \mathbf{a} \times \left(\mathbf{a} \times \mathbf{r} \right) &= \mathbf{a} \times \left(\mathbf{a} - \left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}} \right) \mathbf{b} \right) \\ &= \mathbf{a} \times \mathbf{a} - \left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}} \right) (\mathbf{a} \times \mathbf{b}) \quad \text{(Distributive Property)} \\ &= - \left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}} \right) (\mathbf{a} \times \mathbf{b}) \quad \text{(since } \mathbf{a} \times \mathbf{a} = 0) \end{aligned}$$

From question 3 we have:

$$\mathbf{a} \times (\mathbf{a} \times \mathbf{r}) = (\mathbf{a} \cdot \mathbf{r})\mathbf{a} - (\mathbf{a} \cdot \mathbf{a})\mathbf{r}$$
and so $(\mathbf{a} \cdot \mathbf{r})\mathbf{a} - (\mathbf{a} \cdot \mathbf{a})\mathbf{r} = -\left(\frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{b}}\right)(\mathbf{a} \times \mathbf{b}).$
Rearranging gives $\mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b}} + \left(\frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{a} \cdot \mathbf{a}}\right)\mathbf{a}$
(assume \mathbf{a} is a non – zero vector, so $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \neq 0$)