Question

Let T be a triangle in the hyperbolic plane with angles v, 0, and 7. Prove that
cosh(b) sin(a) = 1, where b is the hyperbolic length of the side of T" opposite
the vertex with angle 0. [Note that since the triangle is not compact, the
hyperbolic trigonometric rules as we have stated and proved them in class
do not apply.|

Answer
Using the transitivity properties of Méb™(H), assume that the vertex with

T
angle 0 is at oo, the vertex with angle 5 is at ¢, and the side joining the

™
vertices with angles B and « lies on the unit circle 51, as pictured below:

v = €' = cos(a) + isin(a)
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So, by previous problem, cosh(b) = csc(a) and so cosh(b)sin(a) = 1 as

desired.



