Question

If a projectile is fired due east from a point on the surface of the earth at a northern latitude λ with a speed V_0 and at an angle of inclination to the horizontal of α , show that the lateral deflection when the particle strikes the earth is

$$d = \frac{4V_0^3}{q}\omega\sin\lambda\sin^2\alpha\cos\alpha.$$

Answer

Same set up as 2b.

Initial conditions: $\dot{y} = V_0 \cos \alpha, \dot{z} = V_0 \sin \alpha; \quad x = y = z = 0.$

First approximation: set $\omega = 0$

 $y = (V_0 \cos \alpha)t$

$$z = (V_0 \sin \alpha)t - \frac{1}{2}gt^2$$

Returns to ground when $t = \frac{2V_0 \sin \alpha}{a}(*)$

Next approximation:

 $\ddot{x} = 2\omega \sin \lambda V_0 \cos \alpha$ $\ddot{y} = -2\omega \cos \lambda (V_0 \sin \alpha - gt)$ $\ddot{z} = 2\omega \cos \lambda V_0 \cos \alpha - g$ From N2 as in 2b.

Thus $x = V_0 \omega \sin \lambda \cos \alpha t^2$

Putting this in (*) gives $x = V_0 \omega \sin \lambda \cos \alpha \frac{4v_0^2 \sin^2 \alpha}{q^2}$ (as required)

i.e. projectile deflected south by this amount.