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MA101 Calculus - Outline Notes: Techniques for Finding Limits

We shall look at four techniques: squeezing, algebraic manipulation, change of variable, and l'Hôpital's Rule.

Squeezing

Example 1

We shall give a geometrical proof of the standard result 
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This is an example of the squeezing technique. It is discussed in Adams on page 67 and there are a few exercises on page 69.

Example 2

Find 
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This is an example where part of the expression has no limit at all; in this case 
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 Nevertheless we can still use the squeezing technique. Remember that cosine always lies between 1 and –1. We therefore have 
[image: image5.wmf](

)

2

1

2

2

cos

t

t

t

t

£

£

-

 for all t. The outer expressions in this chain of inequalities both tend to zero as t tends to zero, and so the squeezing technique tells us that 
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Algebraic Manipulation

There are some examples of this kind on pages 71-72

Example 3

Find 
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 This is an "
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" type. Dividing numerator and denominator by 
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 the highest power of x present in the expression, gives
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Example 4

Find 
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 This is a "
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" type. Rationalising the denominator gives
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Example 5

Find 
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This time we multiply numerator and denominator by the sum of square roots.
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since the last denominator tends to 1 as 
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Change of Variable

We meet the technique of change of variable in many circumstances, for example in integration and differential equations. Here we can us it in limit problems.

Example 6

Find 
[image: image18.wmf]x

x

x

cos

)

sin(cos

lim

2

p

®
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Therefore 
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 using the result of Example 1.

Example 7

Find
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Therefore 
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 using the result of Example 1 and the fact that a product of limits is equal to the limit of the product. 

L'Hôpital's Rule

This rule is designed to deal with "
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" types and sometimes "
[image: image29.wmf]¥

¥

" types. It is discussed in section 4.9, with a proof and some examples.

We shall not consider a proof in this course, but the statement of the rule, which includes the conditions under which the rule is applicable, must be learned. We shall look at some examples.

Statement of the Rule

Suppose that the functions f  and g are both differentiable in an interval containing 
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Suppose also that 
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(These are the conditions for the rule to be applicable and must always be checked.)

Suppose that 
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 exists. Then 
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In section 4.9 the rule is stated for one-sided limits and also for infinite limits. The principles of applying these rules are the same, and we shall concentrate on "
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" types.

Example 8

Find 
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We must first check that the conditions for application of l'Hôpital's Rule are satisfied. Both f and g are differentiable near 
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 Therefore by l'Hôpital's Rule 
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Example 9

Find 
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 You can check that the conditions of by l'Hôpital's Rule are satisfied. We than have 
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 (Taking logarithms can be thought of as analogous to changing the variable.)

Example 10

Find 
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 You can check that the conditions for l'Hôpital's Rule are satisfied. Now 
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 We see that in this case both derivatives tend to zero as 
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 Therefore by l'Hôpital's Rule applied twice 
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There are examples where l'Hôpital's Rule needs to be applied several times, but at each stage we must check that the relevant quotient is a "
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" type.
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Comparing areas we have
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Cancelling � EMBED Equation.3  ��� and dividing by � EMBED Equation.3  ��� gives
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