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MA101 Calculus - Outline Notes: Integration - Revision 

The study of integration begins in Chapter 5 of Adams

There are two ways of thinking about integration. One is as the limit of a sum, and this has many applications in geometry and physics, studying areas, volumes etc. Section 5.1 is a reminder about the use of the ( notation for sums, and you should study this by way of revision. Section 5.2 looks at areas as limits of sums, and again you should study this as revision.

Section 5.3 is a more formal account of the idea of the integral as the limit of sums, and will be considered in some detail in MA204, so you need not study that section.

Section 5.4 describes some of the basic properties of the definite integral. Again this should be largely revision.

The second way of thinking about integration is as the reverse of differentiation, i.e. given a function 
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 can we find a function 
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 Discussion of this begins in section 5.5. There is a variety of techniques, corresponding to various kinds of functions 
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 and we shall be studying some of these techniques. Some of the material will be revision and some will be new. We shall concentrate on examples rather than general theory.

There are extensive tables of integrals in the back of Adams. You need not attempt to learn all these, but there are some basic ones which you will be expected to know, as in the following table. 
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The Constant of Integration

If 
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 for any real number C. This is known as the constant of integration, and strictly speaking should be included in all the integral entries in the table above. 

Manipulating Basic Integrals

Use of various identities and rules of differentiation can be used to reduce many integrals to the basic ones above. There are some standard methods for doing this which are applicable to classes of functions, and we shall consider these in later sections.

Example 1

Find 
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It looks as if the answer should involve 
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 and we should check by differentiation. Now 
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 and so we can see that we have to compensate for the factor of 2. We can therefore write 
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 using the chain rule for differentiation. Therefore 
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Always check your answer by differentiation.

A Common Mistake

In the above example we are integrating a function of the form 
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 It looks as if we have written 
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 and then divided by the derivative of 
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 This is NOT a general rule - it only works above because the function 
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 is simply a multiple of x. We can see that this rule is WRONG by the following example.

It is NOT true that 
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 We can check this by differentiation. We need to use the quotient rule, and we than find that 
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 which is clearly NOT equal to 
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 The moral of this example is:

Always check your answer by differentiation.

Example 2

Find 
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Many trigonometric integrals involve the use of identities. In this case the double angle formula 
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Example 3

Find 
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When we revised trigonometric functions we looked at some trigonometric identities which convert a product into a sum. We have 
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Example 4

Find 
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This function looks complicated to integrate, so we need to look at it in some other way. We need to notice that the function is an odd function, and that the interval of integration is symmetrical about the origin. The answer is therefore zero. This is clear from the graph, with the normal interpretation that areas below the x-axis give a negative answer for the integral. We shall prove this result algebraically later.
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Example 5

Find 
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We need to remember the definition 
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A Common Mistake

A common error is to treat the variable x in the above example as if it were a constant. So 
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 is WRONG. What has been done here is effectively to integrate with respect to a and not with respect to x.
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