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MA101 Calculus - Outline Notes: Integration - Geometrical Applications 

Applications of integration occur throughout mathematics, science and engineering. You will encounter them in many courses. In MA101 we only have time to look at a small number of geometrical applications.

The important thing in this section is NOT to remember particular formulae, but to understand the principles underpinning those formulae, so that you can construct analogous formulae in other areas of application. This approach is strongly emphasised throughout chapter 7 of Adams, of which we shall only consider sections 7.1 and 7.3 in this course.

Volumes of Revolution

We shall consider two methods, the Disc Method, which many of you will be familiar with from A-level, and the Cylindrical Shell methods, which will perhaps be less familiar.

The Disc Method

The basic principle in many applications of integration is to decompose the quantity to be calculated into elementary bits which can be dealt with from basic principles. In the disc method for volumes we slice the object whose volume we wish to calculate into thin discs (sometimes with holes in the middle, whose volume we can calculate approximately. We then sum these elementary volumes and then use the fundamental idea of the integral as the limit of a sum to derive an integral formula for the total volume. This is explained in detail on pages 406-411, with examples and good diagrams. You should study that section of the book.

Example 1

Rotate the region 
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 around the line 
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 and find the volume of the solid obtained.

You can plot a diagram of the surface in MAPLE using the following commands

> with(plots):
> cylinderplot(1+sin(z),theta=0..2*Pi,z=0..Pi);

If you click over the graph you can use the mouse to rotate the surface so that you can see the hole through the middle. There are two sets of lines shown on the surface. One set corresponds to the sine curve rotated; the other set corresponds to circles, which are used to slice the solid into discs with holes in, as the diagram on the next page shows.

The strip shown rotates about the line to give a disc of radius R, and the smaller disc of radius r is removed from the middle to give a washer.
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The strip in the diagram goes from x to x+dx, so it has width dx. It is this strip which when rotated gives the disc whose centre is removed to give the washer.
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Volume of washer = big disc ( small disc
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This is the basic formula used for all problems based on the disc method. We then put in values for the two radii, in general both depending on x. In this particular case the smaller radius is constant because the bottom of the region is part of the x-axis. Therefore 
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Summing and taking limits to give an integral therefore yields
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The Cylindrical Shell Method

This method is discussed on pages 411-413, with examples and diagrams. 

On page 414 is a useful table which explains which of the two methods is best to use in given circumstances.

Example 2

Rotate the region 
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£

£

£

£

x

x

y

0

;

sin

0

 around the line 
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 and find the volume of the solid obtained.

We could try to use the disc method with strips parallel to the x-axis, but if we do that the integral we have to evaluate turns out to be 
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 which is extremely awkward to integrate. We shall see how the cylinder method gives a much simpler integral in this case. We have a similar 2-dimensional diagram to that in Example 1.
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We rotate the strip about the line 
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 to generate a cylindrical shell of thickness 
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The volume of this shell is  
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and this is the basic formula used for all problems based on the shell method. In this case we get 
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Summing and taking limits to give an integral therefore yields the total volume.
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Occasionally one finds an example which is equally straightforward by both methods, and the following shows one of these.

Example 3

Let R denote the region contained between the two curves 
[image: image14.wmf]).
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 Find the volume obtained by rotating this region about the x-axis and about the y-axis.
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We can rotate this strip about the x-axis to give washers, and about the y-axis to give cylindrical shells. If we apply the methods above we find that for the disc method rotating about the x-axis we get the total volume as
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For the shell method rotating about the y-axis we get the total volume as
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It should of course be no surprise that the two answers are the same, because of the symmetry of the diagram. The two solids will be identical in shape and size.

Arc Length

In the book on pages 421-422 a formula is derived for the length of the curve given by 
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 Not all curves can be given as the graph of a function, for example a circle, and so we shall deal with the slightly more general situation where a curve is given parametrically by 
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 We use the dame diagram and method of reasoning as in the book.
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On the parametric graph 
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 the points 
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 are specified by a sequence of values of t:  
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 The right-hand diagram above shows a magnified portion of the graph, for which the length of arc is approximately the same as the length of the line segment joining the endpoints. Using Pythagoras' theorem gives
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So 
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 Summing and taking limits then gives the total length as
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We can relate this to the Cartesian formula given in the book as follows. Suppose that 
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The Cartesian formula is 
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 and from the section of the notes on parametric differentiation we have 
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 We can therefore substitute in the Cartesian formula to give
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which is the same as before.

Example 4
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Using the formula derived above gives
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This is clearly WRONG. The curve can't have zero length. The problem is that we have not been sufficiently careful with the square root. It is NOT TRUE in general that 
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 So the correct version of the calculation is 
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Surface of Revolution

This is discussed on pages 425-427 of Adams. A Cartesian formula is developed there, so we shall look at it from a parametric point of view. So suppose that the curve which generates the surface is given by
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 We further suppose that 
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 for all t and that we rotate the curve about the x-axis. The area of the "ribbon", as explained in figure 7.26, is 
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 so the total surface area is given by


[image: image41.wmf].

))

(

(

))

(

(

)

(

2

2

2

ò

¢

+

¢

p

=

b

a

dt

t

y

t

x

t

y

S


The corresponding Cartesian formula given in the book, where the curve is specified by 
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The inclusion of the modulus of f in the formula is to allow the function to be negative for some values of x.

Example 5

Find the area of the surface obtained by rotating the curve 
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 about the x-axis.

Using the Cartesian formula gives
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Find the length of the curve given by
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