Question

Let $\{S_m\}$ be a sequence of sets.

Let
$$H_n = S_n \cap \left(\bigcup_{m < n} S_m\right)^C$$

Show that
$$H_m \cap H_n = \phi$$
 for $m \neq n$, and that $\bigcup_{n=1}^{\infty} H_n = \bigcup_{n=1}^{\infty} S_n$

Answer

Suppose without loss of generality m < n

$$H_n = S_n \cap \bigcap (S_t)^C \subseteq (S_m)^C$$

$$H_n = S_n \cap \bigcap_{t < n} (S_t)^C \subseteq (S_m)^C$$
$$H_m = S_m \cap (\bigcup_{t < m} (S_t))^C \subseteq S_m$$

Hence
$$H_n \cap \overset{t < m}{H_m} = \phi$$

Since
$$H_n \subseteq S_n$$
, $\bigcup_{n=1}^{\infty} H_n \subseteq \bigcup_{n=1}^{\infty} S_n$

Since $H_n \subseteq S_n$, $\bigcup_{n=1}^{\infty} H_n \subseteq \bigcup_{n=1}^{\infty} S_n$ Now suppose $x\epsilon \bigcup_{n=1}^{\infty} S_n$. Let r be the smallest integer such that $x\epsilon S_r$, then $x \not \in S_m$, for m < r. Therefore $x\epsilon S_r \cap (\bigcup_{m < r} S_m)^C = H_r$ Therefore $x\epsilon \bigcup_{r=1}^{\infty} H_r$.

$$x \not\in S_m$$
, for $m < r$.

Therefore
$$x \in S_r \cap (\bigcup_{m < r} S_m)^C = H_r$$

Therefore
$$x \in \bigcup_{r=1}^{\infty} H_r$$
.

Hence the result.