REAL ANALYSIS
FUNCTIONS OF SEVERAL VARIABLES

We denote (z;...22) by X and f(z1...2,) by f(X). We may think of X
as a vector or a point.

IfA=(ay...a,) B=(by...B —n) then
A—B=(a;—by...a, —by,)
A+B=(a;+by...a,+0b,)

A.B =ajby + ...+ ayb, - a scalar

[|A|l| = /a3 + ...+ a2 norm of A

||A— Bl|| = \/(1a —ap)?+ ...+ (a, — b,)? is the distance AB

|A.B| < ||A|| ||B|| Cauchy’s inequality.

Suppose we have m functions of n variables (V f(X),? f(X)...(™ F(X).
We shall denote by the vector function

F(X)= ((1)f(x1 oz, ()

Theorem 1 If f(X) g(X) are continuous at A relative to S then so are
F(X) + g(X), f(X)g(X) and, if g(A) # 0, L.

Theorem 2 Suppose that the components (Y f(X)...(") f(X) of the vector
function F'(X) are continuous at A relative to S. Let B = F'(A) and let
T be the set of all points F/(X) with X in S. Thenif g(Y) = g(y1 ... Ym)
is continuous at B relative to T, it follows that g(F'(z)) is continuous
at A relative to S.

Differentiability f(X) is differentiable at X+A < Ja vector G|L (X)_Jr |()’(4)7;(|’I(X_A)
0as X — A.

If f is differentiable then ngl e 8% all exist and the vector G is (aa_gfl e 367];).

We call this (grad f(X))x=a or (Vf)x=a.

Thus f(X) is differentiable < ‘5fﬁ§(f‘fX —0as X — 0.

Theorem 3 If 8‘9—;, . %axn are continuous at X = A, then f(X) is differ-
entiable at X = A.



Proof Suppose H # 0 and ||H]|| is sufficiently small. Consider

w Z{f(al+h1...,ar+hr,ar+1...an)
r=1

—flar +hy ... ary + heya,...a,) — he fr(A)}]
(This is ﬁ{f(A +h) = f(A) — AVf})
= H;IH zn: {frlar +hy .. apy + hoyap + 0, friar — an) — fr(A)} hy
r=1
0<0,.<1

Let V' be the vector with components

frlar +hy,...a0phy,arpq .. can) — frA (r=1,2,...n)

Each component can be made as small as we please, provided only that
|| H|| is sufficiently small since f,.(X) is continuous at X + A. Hence we
can make ||V|| < ¢ if ||H|| is sufficiently small. The above inequality

then gives
1 V. H]|
FA+R) - ho f A ‘_ <Vl <e.
T Z Tl

Theorem 4 If f(X) and g(X) are both differentiable at X + A, then so are
F(X) £g(X), f(X).g(X) and, provided g(A)|neq0, £53.

V(fg) = fVg+gVf

V(f+g9)=Vf+Vy

atX = A
f_1 _ L

Vg_gvf gQVg

Proof of (iii) Take f =1 and suppose g(A) # 0. Consider

1 Vga
] |g<A+h> T oA {g%A)}‘H’
| A{g(A) —g(A+ H) +VgaH} +{9(A+ H) — g(A){Vga.H}
|[H| 9*(A)g(A+ H)

- || H ] 9(A)g(A+H) — |g*(A). (A+H)!
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using |Vg.H
leq||Vgl| [[H]| — 0 as [|H]| — 0.

Theorem 5 Function of a function rule.

Let M f(X),® f(X),..." f(X) be differentiable at X = A. Let g(Y) =
g(y1 ... ym) be differentiable at Y = B where B = F(A) = (W f(A)...(" f(A)).

Then h(X) = g(F(z)) is differentiable at X + A and

() WA A a(Y)
(X)) x_a X)) ) N am(Y) )y

Proof Let RHS of the expression be D. Let (¢1(Y)...gn(Y))T =G

We have the following results

1. Since f(X) is differentiable at X + A % is bounded for
0 < ||H|| <.
Thus, if each component of F'(X) is differentiable at X = A W
is bounded in 0 < ||H|| < ¢

2. Since g(Y) is differentiable at Y + B

9(B+Q) =g(B) - G0 =¢c(w)[|Q]

where £(2) — 0 as ||w||to0.

Consider
1
= H;f|||g( (A+ H)) = g(F(A) - G(F(A+ H) = F(A))

+G’( (A+ H) — F(A)) — D.H]|

< 9(B+ Q) —g(B) = G"Q| + 70 |G'(F(A+ H) — F(A)) — D.H|

HHH HHH

(writing F(A)+ B F(A+ H) — F(A) = Q.



First term = 5(9)% by (2) where ¢ — 0 as Q@ — 0.

By (1) % is bounded for 0 < ||H|| < ¢ also since 2 — 0 as H —

0, e(Q) — 0as H— 0.

Second term

(B){" f(A+ H) ()f(A)—H.VTf(A)}’

||H||
< Z|gr HHH Df(A+H) =) f(A) ~ HY"f(4),
— 0 as ||H]|||to0.
Hence ﬁ lg(F(A+ H)) —g(F(A) — D.H| — 0 as ||H|||tc0. Hence

the result.

Corollary In The special case when n = 1 we get, when h(z) = g(F (X))
that

W (z) = F'(a).(Vg)s

Theorem 6 First Mean Value Theorem Suppose d(X) is differentiable
at all points of the open line segment (A, A + H) and continuous on
the closed segment. Then for some

g(A+ H)—g(A)=HNVg(A+60H)

Proof Suppose 0 < ty < 1. Then h(t) = g(A+tH) is differentiable at ¢ = ¢,
since g(X) is differentiable at X = A+ toH and so are a, + toh, r =
1,...,n.

Furthermore

h'(t) = {thHH}.Vg(AHH) at t =t
= HVg(A+tH)t=

And h(t) is continuous for ¢ in [01] hence by MVT h(1) — h(0) — h'(0
for some 0|0 < § < 1. Hence

g(A+ H)—g(A)=HNVg(A+0H)



Theorem 7 Taylor’s Theorem Suppose that the function f(X) is such
that all its partial derivatives of (total) order u — 1 are continuous on
the closed line segment [A, A + H|, and differentiable on the open line
segment (A, A+ H), then for some 6 with 0 < § < 1, we have

u—1 1

f(A+H) = {;) r!Qrf(X)}X:A T {ilQUf()Q}X:AMH

81’1 axn
Proof Write h(t) = f(A+tH)
By induction on r we have
I r=0,1,...u—1
——h(t) = [ f(X)]x_arem 0<t<l1

atr r=ul0<t<l1

By Taylor’s theorem for a function of one variable

1
h"(0) + ﬁh(")e 0<f<1

Hence the result.

Maxima and Minima f(X) has a strict maximum at X = A means 3¢ >
0] in 0 < (X — A| < e we have f(A) > f(X).

By a weak minimum we mean that in 0 < | X4| < ¢| f(4) > f(X).

Theorem 8 Suppose f(X) has a maximum or a minimum at X+ A. If f(X)
has first order partial derivatives at X = A then (Vf)4 =0ie. f.(4) =
0r=1,2,...,n. If f(X) has second order derivatives continuous in a
neighbourhood of A, then the quadratic form Y-, h;h; fij(A) in hy ... by,
is negative or positive semi-definite.

Proof Consider f(z1,22...a,) = ¢(x1). This, as a function of z;, has
a maximum or minimum at x; = a; therefore by the theorem for a
function of one variable ¢'(x;) = % = (. Similarly for other variables
therefore Vfs = 0.

Suppose that the quadratic form is not semi-definite. Then JU =
(uy ...uy,) such that



> figuan; >0
tj
and V' = (v ...v,) such that

Z fijAUﬂ)j <0
ij

Let H' = (uyh ... uyh).

Using Taylor’s Theorem

FA+ HO) = F(4) + 55 fu (A 0 H

The linear terms vanishing as Vf =0
Let H? = (vih...v,h)

FA+HY) = FA) + Y £y (A+ 0 B2,
ij

Since the second derivatives are continuous, 39 > 0| for 0 < h < ¢

fAA+HY) = [(A)+(4)
fAA+H?) = f(A)— (6"

We get neither a maximum nor a minimum since in any sphere of radius
e about A, we can choose h such that |[H'| < ¢ |H?| < e.

item|[Theorem 9] Suppose that f(x) has second derivatives which are
continuous in the neighbourhood of A. Suppose that Vfs = 0 and
that the quadratic form 3°,; hh; fi;(A) is negative/positive definite in
hy...h,. Then f(X) has maximum/minimum at X = A.

Proof Given }_,; fi;j(A)h;h; positive definite, and the second derivatives are
continuous. Then 30 > 0 for each X satisfying |X — A| < § the
quadratic form >;; fi;(X)hsh; is also a positive definite form.

[Using the determinant test, as all the determinants are continuous
functions of X]

Using Taylor’s Theorem,



FX) = FA) + 5 3 Ful A+ 0H)hihy > f(A)

Ij

since the quadratic form is positive definite at each point in the sphere.



