REAL ANALYSIS INEQUALITIES

The Inequality of Arithmetic and Geometric Means Given $x_1 \ge 0$ $x_2 \ge 0 \dots x_n \ge 0$

$$A = \frac{x_1 + x_2 + \ldots + x_n}{n} \ G = (x_1 x_2 \dots x_n)^{\frac{1}{n}}$$

Then G < A unless $x_1 = x_2 = \ldots = x_n$, when G = A.

Proof Suppose without loss of generality that x_1 is a maximal x_{ν} and x_2 is a minimal x_{ν} .

If $x_1 = x_2$ the r's are all equal and there is nothing to prove.

Suppose then that $x_1 > x_2$. We form a new set of numbers $x_{11}x_{21} \dots x_{n1}$ by writing

$$x_{11} = A \ x_{21} = -A + x_1 + x_2 \ x_{r1} = x_r \ r = 3, \dots, n.$$

Let A_1, G_1 be the A.M and G.M of the x_{r_1} 's.

$$A_1 = A \text{ since } x_{11} + x_{21} = x_1 + x_2.$$

However

$$x_{11}x_{2x} - x_1x_2 = A(x_1 + x_2 - A) - x_1x_2$$
$$= (x_1 - A)(A - x_2) > 0$$

since $x_1 > A > x_2$.

Therefore $G_1 > G$

If the $x_{\nu 1}$ are not all equal we can again take a largest $x_{\alpha 1}$ and a smallest $x_{\beta 1}$ and replace them by $A, x_{\alpha 1} + x_{\alpha 2} - A$.

$$A_2 = A_1 \ G_2 > G_1$$

After at most n-1 steps all the x's are equal.

$$G < G_1 < \ldots < G_K = A_k = A$$
 therefore $G < A$.

Cauchy's Inequalities Given $x_1 \dots x_n y_1 \dots y_n$ real.

Then

$$\sum_{r=1}^{n} x_r y_r \le \left(\sum_{r=1}^{n} a_r^2\right)^{\frac{1}{2}} \left(\sum_{r=1}^{n} y_r^2\right)^{\frac{1}{2}}$$

with equality \Leftrightarrow the two sets are proportionali.e. $\Leftrightarrow \exists (\lambda \mu) \neq (00) | \lambda x_r + \mu y_r = 0 \ (r = 1, 2, ..., n)$

Proof Consider the quadratic form $Q(\lambda \mu)$ defined by

$$Q(\lambda \mu) = \sum_{r=1}^{n} (\lambda x_r + \mu y_r)^2$$

= $\lambda^2 \sum_{r=1}^{n} x_r^2 + 2\lambda \mu \left(\sum\right) r = 1^n x_r y_r + \mu^2 \sum_{r=1}^{n} y_r^2$

If $\exists \lambda \mu \neq 00 | \lambda x_r + \mu y_r = 0$ r = 1, 2, ..., n then there is nothing to prove.

Suppose \exists no such (λ, μ) . Then $Q(\lambda \mu) > 0$ for every $(\lambda \mu) \neq (00)$. Hence $Q(\lambda \mu)$ is positive definite so that

$$\left(\sum_{r=1}^{n} x_r y_r\right)^2 < \sum_{r=1}^{n} x_r^2 \sum_{r=1}^{n} y_r^2$$

using " $b^2 < 4ac$ ".

Weighted Means Given a set of non-negative numbers $x_1
ldots x_n$ and a set of weights P, where we attach the weight P_r to x_r , each P > 0. The weighted means are

$$A_P = \frac{P_1 x_1 + \ldots + P_n x_n}{P_1 + P_2 + \ldots + P_n}$$

$$G_P = (x_1^{P_1} x_2^{P_2} \dots x_n^{P_n})^{\frac{1}{p_1 + P_2 + \dots + P_n}}$$

Note If the weights $p_1
ldots p_n$ are replaced by $tp_1
ldots tp_n$, then $A_p G_P$ are unchanged. In particular if we take $t = \frac{1}{P_1 + \dots + p_n}$ we get a set of weights $Q: q_1 \dots q_n | q_1 + \dots + q_n = 1$. Then $G_P
ldots A_P$ with equality \Leftrightarrow all the x's are equal.

Proof (i) Result proved when P_j are all integers.

- (ii) Result follows when P_j are commensurable; i.e. when $\exists t > 0 | tP_1 \dots tP_n$ are all integers.
- (iii) We have to deal with the case where the P's are not commensurable.

Let $q_1 \dots q_n$ be a set of weights $|\sum q_j| = 1$.

Let $Q(q_1 \ldots q_n)$ be a point in R_n .

Take a set of rational points

$$P^r = (r_1 \dots r_n) \quad r_i > 0$$

where $P^r \to Q$ as $r \to \infty$.

 $G_{P_r} < A_{P_r}$ unless the x^{ν} equal.

Letting $r \to \infty$ $G_Q \le A_Q$.

We still have to prove strict inequality when the x's are not all equal. Suppose then that the x's are not all equal. Write

$$q_j = j'_i + q''_i \ j = 1, 2, \dots, n$$

where $q'_j > 0$ $q''_j > 0$ q'_j is rational.

$$P' : Q'_{1} \dots q'_{n} P'' : q''_{1} \dots q''_{n}$$

$$r' = \sum_{i} q'_{i} r'' = \sum_{i} q''_{i} r' + r'' = 1$$

 $G_{P'} < A_{P'}$ by (ii) $G_{p''} \le A_{p''}$

$$G_Q = (G_{P'})^{r'} (G_{p''})^{r''} \le r' G_{P'} + r'' G_{P''} < r' A_{P'} + r'' A_{P''} = A_Q$$

using $\sum q_j = 1$

Hölder's Inequality We have two sets of numbers

$$\begin{array}{ll}
x_1 \dots x_n & x_j \ge 0 \\
y_1 \dots y_n & y_i \ge 0
\end{array}$$

 α, β are positive and $\alpha + \beta = 1$. Then

$$\sum_{\nu=1}^{n} x_{\nu}^{\alpha} y_{\nu}^{\beta} \le \left(\sum_{\nu=1}^{n} x_{\nu}\right)^{\alpha} \left(\sum_{\nu=1}^{n} y_{\nu}\right)^{\beta}$$

with equality \Leftrightarrow the sets are proportional.

Alternative Form Suppose λ, μ are positive and $\frac{1}{\lambda} + \frac{1}{\mu} = 1$

$$\sum_{\nu=1}^{n} x_{\nu} y_{\nu} \le \left(\sum_{\nu=1}^{n} x_{\nu}^{\lambda}\right)^{\frac{1}{\lambda}} \left(\sum_{\nu=1}^{n} y_{\nu}^{\mu}\right)^{\frac{1}{\mu}}$$

[This result above with α, β replaced by $\frac{1}{\lambda}, \frac{1}{\mu}$ and $x_{\nu}^{\alpha}, x_{\nu}^{\beta}$ replaced by new variables x_{ν}, y_{ν} .]

This generalises to k sets and k numbers $\alpha_1 + \ldots + \alpha_k = 1$.

Cauchy's inequality follows with $\lambda = \mu = 2$.

Proof Write
$$U = \sum_{\nu=1}^{n} x_{\nu}$$
 $V = \sum_{\nu=1}^{n} y_{\nu}$

Suppose UV > 0 (nothing to prove otherwise).

$$U^{\alpha}V^{\beta} = \sum_{\nu=1}^{n} x_{\nu}^{\alpha} y_{\nu}^{\beta} = \sum_{\nu=1}^{n} \left(\frac{x_{\nu}}{U}\right)^{\alpha} \left(\frac{y_{\nu}}{V}\right)^{\beta}$$

$$\leq \sum_{\nu=1}^{n} \alpha \frac{x_{\nu}}{\nu} + \beta \frac{y_{\nu}}{\nu} = \alpha + \beta = 1$$

with equality $\Leftrightarrow \frac{x_{\nu}}{U} = \frac{y_{\nu}}{V}$ for $\nu = 1, 2, \dots, n$.

These inequalities generalise to integrals.

Suppose $f(x) \ge 0$ $g(x) \ge 0$ are continuous on $[a\ b]$

$$\int_{a}^{b} f(x)g(x) \, dx \le \left(\int_{a}^{b} f^{2} \, dx\right)^{\frac{1}{2}} \left(\int_{a}^{b} g^{2} \, dx\right)^{\frac{1}{2}}$$

This is known as Schwarz's inequality.

If
$$\frac{1}{\lambda} + \frac{1}{\mu} = 1 \ \lambda > 0 \ \mu > 0$$
 then

$$\int_a^b f(x)g(x) dx \le \left(\int_a^b f^{\lambda} dx\right)^{\frac{1}{\lambda}} \left(\int_a^b g^{-\mu} dx\right)^{\frac{1}{\mu}}.$$

This is known as Hölder's inequality.