QUESTION

- (a) State the three axioms A1-A3 for a group (G, e, *).
- (b) Show that every finite group is isomorphic to a group of permutations of a finite set.
- (c) (i) Carefully prove the following statement using only the axioms for a group, and saying which axiom you use at each stage of the argument: Given a group (G, e, *) and elements $g, h, k \in G$, if g * h = g * k then h = k.
 - (ii) Use your result from the previous part to prove the following statement: Given a group (g, e, *) and an element $g \in G$ there is a unique element $k \in G$ such that g * k = e.
 - (iii) Given a group (G, e, *) and elements $g, k \in G$ show that if g*k = e than k*g = e.
- (d) Let (G, e, *) be a group. Show that the binary operation \cdot on G, defined by $a \cdot b = b * a$, is a group operation on G. Show also that the map $\phi : G \longleftarrow G$ defined by $g \mapsto g^{-1}$ is an isomorphism from the group (G, e, *) to the group (G, e, \cdot) .

ANSWER

- (a) A1) For any three element $g, h, k \in G, (g * h) * k = g * (h * k)$.
 - **A2)** There is an element $e \in G$ such that for any element $g \in G$, we have e * g = g = g * e.
 - **A3)** For any element $g \in G$ there is an element g^{-1} (called the inverse of g) such that $g * g^{-1} = g^{-1} * g = e$.
- (b) For each element $g \in G$ define a function $f_g : G \Longrightarrow G$ by $f_g(k) = g * k$. This is a bijection since its inverse is given by the function $f_{g^{-1}}$. The function $\phi : G \Longrightarrow S_G$ given by $g \mapsto f_g$ is then an isomorphism since $\phi(g * h)$ is the function f_{g*h} defined by $k \mapsto (g * h) * k$, which by associativity is the same as $f_g \circ f_h(k)$, hence $\phi(g * h) = \phi(g * h) = \phi(g) \circ \phi(h)$ as required.
- (c) (i) $g * h = g * k \Rightarrow g^{-1} * (g * h) = g^{-1} * (g * h) \Rightarrow_{A1} (g^{-1} * g) * h = (g^{-1} * g) * k \Rightarrow_{A1} e * h = e * k \Rightarrow_{A2} h = k.$
 - (ii) By A3 there is at least one element, denoted g^{-1} such that $g*g^{-1} = e$. Now suppose there is another denoted k. Then $g*g^{-1} = g*k \Rightarrow g^{-1} = k$ by the previous result.

- (iii) $g * k = e \Rightarrow k * (g * k) = k * e =_{A2} k \Rightarrow_{A1} (k * g) * k = k \Rightarrow ((k * g) * k) * k^{-1} = k * k^{-1} =_{A3} e$. Now by A1 $((k * g) * k) * k^{-1} = (k * g) * (k * k^{-1}) =_{A3} (K * g) * e =_{A2} k * g$. Hence k * g = e as required.
- (d) A1) For any elements $a, b, c \in G, a.(b.c) = (b.c) * a = (c * b) * a = c * (b * a) = (b * a).c = (a.b).c.$
 - **A2)** For any $a \in G$, a.e = e * a = a = a * e = e.a.
 - **A3)** For any $a \in G$ let a^{-1} denote the inverse of a for the binary operation *. Then $a.a^{-1} = a^{-1} * a = e = a * a^{-1} = a^{-1}.a$.

For any $a, b \in G$. $\phi(a*b) = (a*b)^{-1} = b^{-1}*a^{-1} = \phi(b)*\phi(a) = \phi(a), \phi(b)$, so ϕ is a homomorphism. Sine $\phi \circ \phi(a) = a$ for any $a \in G$, ϕ is invertible and therefore an isomorphism.