Multiple Integration Iteration of Double Integrals

Question

Find the volume for the solid defined by

The space inside the cylinder $x^2 + 2y^2 = 8$ that is over the plane z = y - 4 and under the plane z = 8 - x.

Answer

The part of z = 8 - x that lies inside $x^2 = 2y^2 = 8$ lies over z = 0. The part of z = y - 4 that lies inside the cylinder lies under z = 0.

$$\Rightarrow V = \iint_{x^2 + 2y^2 \le 8} (8 - x - (y - 4)) dA$$

$$= \iint_{x^2 + 2y^2 \le 8} 12 dA$$

$$= 12 \times (\text{area of } \frac{x^2}{8} + \frac{y^2}{4} = 1)$$

$$= 12 \times \pi (2\sqrt{2})(2)$$

$$= 48\sqrt{2}\pi \text{cu. units}$$