
Question

(a) Show that all the roots of the equation

(1 + x)2n+1 = (1− x)2n+1

are given by
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)

k = 0, 1, 2, · · · , n

By putting n = 2 show that

tan2
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)

tan2

(
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5

)

= 5.

(b) If w = 2z + z2 show that the circle |z| = 1 corresponds to a cardioid in
the w-plane.

Answer

(a)
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Putting n = 2. The equation reduces to x(x4 + 10x2 + 5) = 0.

So the product of the non-zero roots is 5.

i.e. tan2

(
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)
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= 5.

(b) w = 2z + z2

w + 1 = (z + 1)2

If z lies on the unit circle z + 1 lies on the circle centre 1 radius 1
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r = 2 cos θ

So r2 = 4 cos2 θ

Let w + 1 = ρeiφ z + 1 = reiθ the ρ = r2 and φ = 2θ

So ρ2 = 16 cos2 φ

2
= 8(1 + cosφ) which is a cardioid.

−→

0 4

z ζ = z + 1 ω = w + 1

−1 3

w

2


