Question
Use Laplace’s method to show that
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Thus we have a full contribution from the min. at ¢ = 0.
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Need to expand this about ¢t = 0 (u = 0)
R (t)approxzh”(0)t t — +oo by Taylor
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(By standard Gaussian integral)
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When we consider
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Looking at the graph of h(t) = 2t — t* as above, we see that ¢t = 0 is
an endpoint minimum but ¢ = 3 is an overall minimum on the range of
integration. Thus the dominant behaviour will come from ¢ = 3, a linear
endpoint. Thus we proceed as in question 6:
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du = h'(t)dt
NB endpoint is at RHS
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= —96(t —3)
NB minus sign will reverse limits in integral
R(t) ~ h'(3)+ h"(3)(t —3) by Taylor
= —96 toleadingorder
Also need expansion of /2 + t about ¢t = +3:
V2+t=+5+0(t—3)t— 3 byTaylor
Therefore
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The two integrals above only differ by their range of integration. However
they have dramatically different behaviour as * — +o0o. The first tends to

1
zero (\/_ — 0 as x — +0o0 |, the second — +oo (€93 — oo as x — +00).
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In fact, even when x = +1, €% ~ 2.3 x 10?7,



