QUESTION

- (a) An investor wishes to trade in options on an asset whose current price one year from the maturity date of an option is \$25, the exercise price of the option is \$20, the risk-free interest rate is 5% per annum and the asset volatility is 20% per annum. Calculate by what amount the asset price has to change for the purchaser of a European call option to break even giving your answer to 4 decimal places?
- (b) Write down the call-put parity formula for European options. Hence repeat part (a) but for a European put.
- (c) Sketch the qualitative behaviour of the European call and put values over the lifetime of the option as a function of the underlying asset price.
- (d) Calculate the initial price of the call option in part (a) if the asset pays a continuous dividend of DS where S is the asset price and D = 0.01.

You may assume that the solution of the Black-Scholes equation for a European call option, paying no dividends, is given by,

$$c(S,t) = SN(d_1) - K \exp(-r(T-t))N(d_2),$$

$$d_1 = \frac{\log\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}},$$

$$d_2 = \frac{\log\left(\frac{S}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}.$$

ANSWER

(a) T = 1, $S_0 = 25$, K = 20, r = 0.05, $\sigma = 0.2$

For the holder of a Eurocall, the asset price must rise by the following to break even:

Payoff at t = T.

Therefore the price must rise to K + C for the holder to break even. If the initial asset price is S_0 , requires final asset price is $K + C_0$ so the rise must be $K + C_0 - S_0$ Therefore we need to know the initial premium at S_0 .

Use the formula given at t = 0.

$$C(S_0, 0) = S_0 N(d_1(0)) - K e^{-rT} N(d_2(0))$$

$$d_1(0) = \frac{\left(\log\left(\frac{S_0}{K}\right) + \left(r + \frac{\sigma^2}{2}T\right)\right)}{\sigma\sqrt{T}}$$

$$d_2(0) = \frac{\left(\log\left(\frac{S_0}{K}\right) + \left(r - \frac{\sigma^2}{2}T\right)\right)}{\sigma\sqrt{T}}$$

Feed in the above data to get

$$d_1 = 1.47$$

 $d_2 = 1.27$ } to 2 d.p.

We need to find N(1.47) and N(1.27). From the tables, N(1.47) = 0.9297, N(1.27) = 0.8980

$$C(S,0) = 25 \times 0.9292 - 20e^{-0.05} \times 0.8980 = 6.1459$$

Therefore to break even they need a new price of K+C-0=20+6.1459=26.1459

Therefore the current price needs to rise by $K + C_0 - S = 1.1459$.

(b) The call-put parity formula is

$$C(S,t) - P(S < t) = S - Ke^{-r(T-t)}$$

Therefore

$$P(S_0, 0) = C(s_0, 0) - S_0 + Ke^{-rT}$$

$$= 1.1459 - 25 + 20e^{-0.05}$$

$$= 0.1705$$

So need price to fall to $K - P_0$ to break even = 20 - 0.1705 = 19.8295 i.e. needs to fall by 25 - 19.8295 = 5.1705.

(d) Result of part (a) changes by converting $r\to r-D$ (as per example in lecture notes) in all equations. Thus the effective interest rate is 0.05-0.01=0.04

$$d_1(0) = \frac{\left(\log\left(\frac{S_0}{K}\right) + \left(r - D + \frac{\sigma^2}{2}\right)T\right)}{\sigma\sqrt{T}}$$

etc.

With

$$C(S,t) = Se^{-D(T-t)}N(d_1) - Ke^{-r(T-t)}N(d_2)$$

$$d_1(0) = 1.42$$

$$d_2(0) = 1.22$$

$$C(s_0,0) = 25e^{-0.01}N(1.42) - 20e^{-0.05}N(1.22)$$

$$N(1.42) = 0.9222$$

$$N(1.22) = 0.8888$$

$$C(S_0,0) = 22.8256 - 16.9091 = 5.9165$$