QUESTION

Two firms X and Y manufacture batteries with a nominal life of 1000 hrs. It is claimed that those manufactures by Y have a greater average life. 8 batteries are chosen at random from each manufacturer and their life-times (in hours above 1000) are:

Assuming that the battery life-times are normally distributed show that it is reasonable to assume that they come from populations with the same variance.

Test the claim of greater average life of Y batteries (a) using an appropriate t-test, (b) using ANOVA.

ANSWER

Test 6, comparison of two variances. Assume normal distribution $z = \frac{s_1^2}{s_2^2} \sim F_{n_1-1,n_2-1}$

$$\overline{x} = 4$$
 $s_1 = 16.3183, \quad n_1 = 8$
 $\overline{y} = 14$
 $s_2 = 13.5962, \quad n_2 = 8$
 $z = \frac{(16.3183)^2}{(13.5962)^2} = 1.44$
not significant

Hence accept variances equal.

(a)
$$H_0: \mu_1 = \mu_2 \ H_1 < \mu_2$$

Test 4, comparison of two means, variances unknown but equal.

$$z = \frac{x_1 - x_2}{\sqrt{\{s^2(\frac{1}{n_1} + \frac{1}{n_2})\}}} \sim t_{n_1 + n_2}$$

$$s^2 = \frac{7 \times 16.3183^2 + 7 \times 13.5962^2}{14}$$

$$s = 15.0190$$

$$z = \frac{15.019\sqrt{\frac{1}{8} + \frac{1}{8}}}{15.019\sqrt{\frac{1}{8} + \frac{1}{8}}}$$
= 1.33
not significant
Hence accept H_0 .

(b)
$$T_1 = 32$$
 $T_2 = 112$ $T = 144$ $C = \frac{(144)^2}{16} = 1296$
 $\sum x^2$ $TSS = 4854 - 1296 = 3558$ $BSS = \frac{(32)^2}{8} + \frac{(112)^2}{8} - 1296 = 400$ $WSS = 3558 - 400 = 3158$. (Check that this is the numerator of $s^2 = \sum (x - \overline{x})^2 + \sum (y - \overline{y})^2$
Anova table

source	$\mathrm{d}\mathrm{f}$	SS	ms
between groups	1	400	400
within groups	14	3158	$225.57 = \sigma^2$
total	15*3558		

 $H_0: \mu_1 = \mu_2 \ H_1 \neq \mu_2 \ \alpha = 10\%$ will test $H_0: \mu_1 = \mu_2$ against $H_1 < \mu_2$ at $\alpha = 5\%$ $F_{1,14} = \frac{400}{225,57} = 1.77 = (1.33)^2$ which is not significant.