Question

A particle of mass m slides under gravity on a smooth wire in the shape of
the cycloid x = a(f —sin#), y = a(1 +sinf), 0 < 6 < 27 as shown below
PICTURE

(a) Show that the kinetic energy of the bead is ma?(1 — cos 6)62.

(b) Find the Lagrangian and deduce the equation of motion
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(c) Rewrite the above equation in terms of u = cos? and deduce that,
irrespective of the starting position, the period of oscillation is the same
as that of a plane pendulum of length 4a undergoing small oscillations.

(d) Suppose two identical beads are released from rest with § = 0 and
0 = 7 respectively. Where do they collide? At what time do they
collide? What happens subsequently? (Assume that the coefficient of

restitution, e, is unity.)
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Euler-Lagrange equation:
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(cancelling a sing # 0 for general motion.)
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Hence (*) can be written as:
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which implies Simple Harmonic Motion with frequency ,/4& i.e. a pendulum
a

with length 4a.
The period is independent of the starting position so the beads will
collide at the bottom of the cardioid (7a,0) after a quarter of a period

The collisions are perfectly elastic at the bottom.
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i.e. the beads exchange their speeds and then repeat the motion (and colli-
sions at the bottom) indefinitely.



