FUNCTIONAL ANALYSIS
THE STONE-WEIERSTRASS THEOREM

Let X be a compact space and let A be an algebra of real-valued continuous
functions on X which separates the points of X (i.e. z # y = 3f €
A: f(z) # f(y)) and which has the property that there is no point of
X at which all the functions of A vanish. Then A is uniformly dense
on the set of all the real-values continuous functions defined on X.

Lemma 1 The set of all continuous functions forms a lattice. Let A be a
set of real-valued continuous functions on a compact space X which is
closed under the lattice operations f V g and f A g. Then the uniform
closure of A contains every continuous function on X which can be
approximated at every pair of points by a function of A.

[The uniform closure of A means the set of functions to which functions
of A converge uniformly.]

Proof Let f be any function which can be so approximated and let € > 0.
Given z,y € X let f,, € A be such that |f,,(x) — f(z)| < € and
[fey(y) — fy)l < e
Fixing y, let Uy, = {2 : foy(2) < f(2) + ¢}

Let Viy = {2 : fuy(2) > f(2) — €}
Now z € Uy, therefore U,U,, D X.

hence there are a finite number of these sets say Uy, ...U,,, whose
union covers X.

We put f = fo, y Aoy Ao A f2,0
fy € A as Ais closed under A.
Write Vy =VaxiyNnVayn...NV, y.

Vy is then a neighbourhood of y and fy < f + ¢ everywhere on X
fy > f — ¢ on the neighbourhood Vy of y as y € Vy. U,V, D X,
so there is a finite number of these sets, say V,, ..., V,, whose union
covers X.

We put g = fy1 V fy2 V...V fys.
Then g€ Aand f —e < g < f+ ¢ everywhere on X.

Lemma 2 A uniformly closed algebra A of bounded real-valued functions
on a set is also closed for the lattice operations.



Proof
frg+l|f—gdl

fVvg = 5
fvg = f+g—2|f—g|

Hence it suffices to show that f € A = |f| € A.

We may suppose without loss of generality

1]l = sup{|f(2)] : x € X} < 1

1 . .
5 converges uniformly in

The Taylor series for (& + €2)2 about ¢t =
0 <t < 1 therefore putting ¢ = 2 there is a polynomial P(z?) in z?

such that
|P(2?) — (2® + €%)7| < e on [~1 1]

If @ = P — P(0) then since |P(0)| < 2¢ we have
1Q(2?) — (° — £%)%| < 3e on [—1 1]

Now 0 < (22 +£2)2 — |z| < € so

|Q(2?) — |x|] < 4¢ on [~1 1]
Since Q(f?) € A and |Q(f?) — |f|| < 4e everywhere on X therefore

|F| € A as A is uniformly closed.

Proof of Theorem Let A=uniform closure of A then it is clear that A is an
algebra therefore by Lemma 2 it is closed under the lattice operations.

Using the given properties of A we can find a function g € A so that

g9(x) #0 g(y) #0 g(z) # 9(y).
then g(7)g*(y) # g(y)g*(x). Thus we can always find o 3 satisfying

af(z)+Bf(z) = a
ag(y) + Bg*(y) =

2



for any given a and b. Hence any f can be approximated at a pair of
points by a function of A (as ag + Bg*> € A). Hence the result follows
from lemma 1.

Linear Transformations Let F and F' be two vector spaces. A transfor-
mation 7" from E to F is linear if A( alphaz + By) = oT'(z) + BT (y)
for any x,y € F and any «, [.

The set of all linear transformations from E to F is itself a vector space
over the same field of scalars, for if T}, T, are two such transformations
we can define T} and 75 and o7} by

(T1+T2)Z' = T1$+T2£C
(al)x = o(Tix)

The linear transformations from a vector space onto itself form an al-
gebra, for if T7, T, are 2 such transformations we can define T\ Tox =
Tl (TQZL‘)

Continuous linear transformations between Banach Spaces Let E and
F be Banach Spaces and let T" be a linear transformation from FE to
F. The following statements are equivalent:

(i) T is continuous.

(ii) T is continuous at one point.

(iii) 7" is bounded on the unit sphere.

(iv) There is a number N such that ||Tz|| < N||z|| for any x € E.

The set of all continuous linear transformations form a Banach Sphere.

[ T||
[l

Define ||T'|| = SUD|| x|=1 |Tx|| = sup,
This is clearly a norm.

Suppose {1} is a Cauchy sequence. For any z € E ||T,,(z) — T,,,(z)]| <
|77, — Tonll||z|| therefore {T),(z)} for every z is a Cauchy sequence there-
fore T, (z) — T'(x).

Now suppose without loss of generality 7),(x) — 0 for every z. R.T.P.
Tl = 0.

Given € > 0 choose N such that ||T,, — T,,|| < § whenever m,n > N.



Let [|z|| < 1. Let m > N. Since T,,(z) — 03n > N such that ||T,(x)| <

2

[T () = To(2) | < [T = Tallllz] - <
therefore || (2)[| < [[T0(x) = Ton (@)l + | Ta ()] <

M po| ™

if we have bounded linear mappings from X — Complex numbers, the
Banach space of these mappings is called the dual space X* of X. Its
elements are called functionals. We may also regard the elements of X
as functions defined on X*.

If x € X and z* € X* we use (z,x*) for 2*(x).

If F is a vector space, E is a linear subspace of deficiency 1 if 4z € F
such that H + [z] = E.

Suppose f is any functional f : X — C.

H={xz € E: f(xr) — 0} is a hyperplane if f # 0.
Chooses z( such that f(zg) # 0.

Let y € E. Then y — (( xo € H, y=h+ A\xo.

Conversely given any hyperplane H3x such that H + [z] = FE ie. y =
h + Az X is unique.

Define f(y) = Aa « # 0 fixed.

Two functionals have the same null space < one is a multiple of the
other. The continuous functionals are those for which the null space is
a closed hyperplane.

If X is a finite dimensional space X* is the same as X.

Example

() =

Let {b,} € ¢? then we can define

f{an}) =D anb, < (Z]an] ) (|sum|b,,|? )% < 0.

[f({an}) < llanllpllbnlly therefore || £l < {bnllq-
To show || f]| = [[{bn}]-a:
Choose any N and define
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A, = |Bn‘q71

IN

n<NOn>N

>
3

Then

[f{an D] = Z;Ibnlqﬁ 1/ Hlanll,

1
p

N % N
_ (anwp-p) — 17l (Zw)
1 1
N :
therefore <Z|bn\q> < |Ifll
1

1
therefore <Z|bn’q> < |If]l

1

Now let f € (¢7)*.
Define b, = f({0,0,...,0,,1,0,0...}) where the 1 is in the nth place.
By linearity

Sl

N

> anby,

1

|f({aras ... as0,0,...})| =

</ <§Z|anlp>

1

Now choose a,, = b1t Then

[

N

Z anbn

1

N P
=Sl < ] (Z |bn|qp-p)
1

Therefore

(Z \bn\q)q <11

therefore letting N — oo it follows that {b, € ¢4 and is that sequence
from which f arises.

(£F)* = (09)* = (P - reflexive.
(1) = 1.



