
FUNCTIONAL ANALYSIS
THE STONE-WEIERSTRASS THEOREM

Let X be a compact space and let A be an algebra of real-valued continuous
functions on X which separates the points of X (i.e. x 6= y ⇒ ∃f ∈
A : f(x) 6= f(y)) and which has the property that there is no point of
X at which all the functions of A vanish. Then A is uniformly dense
on the set of all the real-values continuous functions defined on X.

Lemma 1 The set of all continuous functions forms a lattice. Let A be a
set of real-valued continuous functions on a compact space X which is
closed under the lattice operations f ∨ g and f ∧ g. Then the uniform
closure of A contains every continuous function on X which can be
approximated at every pair of points by a function of A.

[The uniform closure of A means the set of functions to which functions
of A converge uniformly.]

Proof Let f be any function which can be so approximated and let ε > 0.

Given x, y ∈ X let fxy ∈ A be such that |fxy(x) − f(x)| < ε and
|fxy(y)− f(y)| < ε

Fixing y, let Uxy = {z : fxy(z) < f(z) + ε}

Let Vxy = {z : fxy(z) > f(z)− ε}

Now x ∈ Uxy therefore ∪xUxy ⊃ X.

hence there are a finite number of these sets say Ux1y . . . Uxny whose
union covers X.

We put fy = fx1
y ∧ fx2

y ∧ . . . ∧ fxn
y

fy ∈ A as A is closed under ∧.

Write V y = V x1y ∩ V x2y ∩ . . . ∩ Vxn
y.

V y is then a neighbourhood of y and fy < f + ε everywhere on X

fy > f − ε on the neighbourhood V y of y as y ∈ V y. ∪yVy ⊃ X,
so there is a finite number of these sets, say Vy1

. . . , Vyk
whose union

covers X.

We put g = fy1 ∨ fy2 ∨ . . . ∨ fyk.

Then g ∈ A and f − ε < g < f + ε everywhere on X.

Lemma 2 A uniformly closed algebra A of bounded real-valued functions
on a set is also closed for the lattice operations.
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Proof

f ∨ g =
f + g + |f − g|

2

f ∨ g =
f + g − |f − g|

2

Hence it suffices to show that f ∈ A⇒ |f | ∈ A.

We may suppose without loss of generality

‖f‖ = sup{|f(x)| : x ∈ X} ≤ 1

The Taylor series for (t + ε2)
1
2 about t = 1

2
converges uniformly in

0 ≤ t ≤ 1 therefore putting t = x2 there is a polynomial P (x2) in x2

such that

|P (x2)− (x2 + ε2)
1
2 | < ε on [−1 1]

If Q = P − P (0) then since |P (0)| ≤ 2ε we have

|Q(x2)− (x2 − ε2)
1
2 | < 3ε on [−1 1]

Now 0 < (x2 + ε2)
1
2 − |x| < ε so

|Q(x2)− |x|| < 4ε on [−1 1]

Since Q(f 2) ∈ A and |Q(f 2) − |f || < 4ε everywhere on X therefore
|F | ∈ A as A is uniformly closed.

Proof of Theorem Let A=uniform closure of A then it is clear that A is an
algebra therefore by Lemma 2 it is closed under the lattice operations.

Using the given properties of A we can find a function g ∈ A so that

g(x) 6= 0 g(y) 6= 0 g(x) 6= g(y).

then g(x)g2(y) 6= g(y)g2(x). Thus we can always find α β satisfying

αf(x) + βf 2(x) = a

αg(y) + βg2(y) = b
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for any given a and b. Hence any f can be approximated at a pair of
points by a function of A (as αg + βg2 ∈ A). Hence the result follows
from lemma 1.

Linear Transformations Let E and F be two vector spaces. A transfor-
mation T from E to F is linear if A( alphax + βy) = αT (x) + βT (y)
for any x, y ∈ E and any α, β.

The set of all linear transformations from E to F is itself a vector space
over the same field of scalars, for if T1, T2 are two such transformations
we can define T1 and T2 and αT1 by

(T1 + T2)x = T1x+ T2x

(αT1)x = α(T1x)

The linear transformations from a vector space onto itself form an al-
gebra, for if T1, T2 are 2 such transformations we can define T1T2x =
T1(T2x).

Continuous linear transformations between Banach Spaces Let E and
F be Banach Spaces and let T be a linear transformation from E to
F . The following statements are equivalent:

(i) T is continuous.

(ii) T is continuous at one point.

(iii) T is bounded on the unit sphere.

(iv) There is a number N such that ‖Tx‖ ≤ N‖x‖ for any x ∈ E.

The set of all continuous linear transformations form a Banach Sphere.

Define ‖T‖ = sup‖X‖=1 ‖Tx‖ = supx
‖Tx‖
‖x‖
.

This is clearly a norm.

Suppose {Tn} is a Cauchy sequence. For any x ∈ E ‖Tn(x)−Tm(x)‖ ≤
‖Tn−Tm‖‖x‖ therefore {Tn(x)} for every x is a Cauchy sequence there-
fore Tn(x)→ T (x).

Now suppose without loss of generality Tn(x)→ 0 for every x. R.T.P.
‖Tn‖ → 0.

Given ε > 0 choose N such that ‖Tn − Tm‖ <
ε
2
whenever m,n > N .
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Let ‖x‖ ≤ 1. Letm > N . Since Tn(x)→ 0∃n > N such that ‖Tn(x)‖ <
ε
2

‖Tm(x)− Tn(x)‖ ≤ ‖Tm − Tn‖‖x‖ ≤
ε

2
therefore ‖Tm(x)‖ ≤ ‖Tn(x)− Tm(x)‖+ ‖Tn(x)‖ < ε

if we have bounded linear mappings from X → Complex numbers, the
Banach space of these mappings is called the dual space X∗ of X. Its
elements are called functionals. We may also regard the elements of X
as functions defined on X∗.

If x ∈ X and x∗ ∈ X∗ we use 〈x, x∗〉 for x∗(x).

If E is a vector space, E is a linear subspace of deficiency 1 if ∃x ∈ E

such that H + [x] = E.

Suppose f is any functional f : X → C.

H = {x ∈ E : f(x)− 0} is a hyperplane if f 6≡ 0.

Chooses x0 such that f(x0) 6= 0.

Let y ∈ E. Then y − f(y)
f(x0)

x0 ∈ H, y = h+ λx0.

Conversely given any hyperplane H∃x such that H + [x] = E i.e. y =
h+ λx λ is unique.

Define f(y) = λα α 6= 0 fixed.

Two functionals have the same null space ⇔ one is a multiple of the
other. The continuous functionals are those for which the null space is
a closed hyperplane.

If X is a finite dimensional space X∗ is the same as X.

Example
(`P )∗ = `p

Let {bn} ∈ `q then we can define

f({an}) =
∑

anbn ≤
(

∑

|an|
P
)

1
p (|sum|bn|

q)
1
q <∞.

|f({an}) ≤ ‖an‖p‖bn‖q therefore ‖f‖ ≤ ‖bn‖q.

To show ‖f‖ = ‖{bn}‖ q:

Choose any N and define
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An = |Bn|
q−1 bn

|bn|
n ≤ N 0, n > N

Then

|f({an})| =
N
∑

1

|bn|
q ≤ ‖f‖‖an‖p

= ‖f‖

(

N
∑

1

|bn|
qp−p

)

1
p

= ‖f‖

(

N
∑

1

|bn|
q

)

1
p

therefore

(

N
∑

1

|bn|
q

)

1
q

≤ ‖f‖

therefore

(

∞
∑

1

|bn|
q

)
1
q

≤ ‖f‖

Now let f ∈ (`p)∗.

Define bn = f({0, 0, . . . , 0, , 1, 0, 0 . . .}) where the 1 is in the nth place.

By linearity

|f({a1a2 . . . an0, 0, . . .})| =

∣

∣

∣

∣

∣

N
∑

1

anbn

∣

∣

∣

∣

∣

≤ ‖f‖

(

N
∑

1

|an|
P

)

1
p

Now choose an = bq−1
n

bn

|Bn|
. Then

∣

∣

∣

∣

∣

N
∑

1

anbn

∣

∣

∣

∣

∣

=
∑

|bn|
q ≤ ‖f‖

(

N
∑

1

|bn|
qp−p

)

1
p

Therefore

(

N
∑

1

|bn|
q

)

1
q

≤ ‖f‖

therefore letting N → ∞ it follows that {bn ∈ `q and is that sequence
from which f arises.

(`P )∗∗ = (`q)∗ = `p - reflexive.

(`1)∗ = `∞.
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