
FUNCTIONAL ANALYSIS
INTEGRATION-FUNCTIONAL APPROACH

The starting-point is a vector lattice L of functions defined on a space X.

We have a functional I defined on L with the following properties

(i) I : L→ R

(ii) I is linear on L

(iii) f ≥ 0⇒ I(f) ≥ 0

(iv) If fn ↓ 0 I(fn)→ 0

we now extend I to a wider class of functions U = {g : X → R : fn ↑ g
for some sequence.}

Suppose fn ↑ g and gn ↑ g where {fb}{gn} ∈ L.

For every n0

fn ≥ fn ∧ gn0
↑ gn0

as n→∞ therefore

I(gn0
) = lim I(fn ∧ gn0

) ≤ I(fn)

Hence lim I(gn) ≤ lim I(fn).

Similarly lim I(gn) ≥ lim I(fn). Therefore

lim I(gn) = lim I(fn) =
df Ih

U is no longer a vector lattice, but it has the following properties:

(i) f, g ∈ U ⇒ f + g ∈ U

(ii) f ∈ U c ≥ 0⇒ cf ∈ U

(iii) f, g ∈ U ⇒ f ∨ g f ∧ g ∈ U .

We have the following results.

If gn ≥ 0 and gn ⊂ U and if
∑

gn = g then g ⊂ U and I(g) =
∑

Ign,
for g ≥ 0 g ⊂ U ⇔ ∃{fn} ⊂ L such that fn ≥ 0 and g =

∑∞
1 fn. In

this case I(g) =
∑

Ifn.

If gn ≥ 0 and gn ⊂ U and if g = lim gn then g ⊂ U and I(g) = lim I(gn).

We now extend the definition of I to a different class of functions.

Define
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I(h) = inf{I(g) g ∈ U g ≥ h}

I(h) = −I(−h)

(i) I(f + g) ≤ I(f) + I(g)

(ii) I(cf) = cI(f) c ≥ 0

(iii) f ≤ g ⇒ I(f) ≤ I(g) and I(f) ≤ I(g)

(iv) I(f) ≤ I(f),

for 0 = I(0) = I(f − f) ≤ I(f) + I(−f) therefore I(f) = −I(−f) ≤
I(f).

Theorem If f ∈ U I(f) = I(f) = I(f).

Proof If f ∈ U clearly I(f) = I(f).

∃{fn} ⊂ L such that fn ↑ f therfore −fn ↓ −f

I(f) = lim I(fn)

−I(f) = lim I(−fn) ≥ I(−f) = −I(f)

therefore I(f) ≥ I(f)

Hence the result.

Theorem If fn is a sequence of non-negative functions and f =
∑

fn

I(f) ≤
∑

I(fn).

Proof Suppose without loss of generality
∑

I(fn) <∞.

Given ε > 0, for each n we can find gn ∈ U such that gn ≥ fn and
I(gn) < I(fn) +

ε
2n
.

If g =
∑

gn, g ∈ U g ≥ f so

I(g) ≤
∑

I(fn) + ε

therefore I(f) ≤
∑

I(fn) + ε

therefore I(f) ≤
∑

I(fn)
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Define L′ = {f : I(f) = I(f) <∞}.

L′ contains all functions of U on which I is finite. L′ ⊂ L.

If f ∈ L′ define I(f) = I(f) = I(f).

L′ is a vector lattice.

Let ◦ = + ∧ or ∨.

Let f, g ∈ L′, ε > 0

∃f1 f2 : f1 ∈ U f2 ∈ −U f2 ≤ f ≤ f1 and I(f1) + I(−f2) < ε.

∃g1 g2 : g1 ∈ U g2 ∈ −U g2 ≤ g ≤ g1, and I(g1) + I(−g2) < ε

f2 ◦ g ≤ f ◦ g ≤ f1 ◦ g f1 ◦ g1 ∈ U f2 ◦ g2 ∈ −U

I(f1 ◦ g1) + I(−f2 ◦ g2) ≤ I(f1 − f2) + I(g1 − g2) < 2ε

Therefore f ◦ g ∈ L′

Scalar multiplication is trivial.

Theorem If {fn} is an increasing sequence of functions in L′, if lim I(fn) <
∞ and if = lim fn then f ∈ L′ and I(f) = lim(fn).

Proof We may suppose that f1 = 0 f =
∑∞

1 (fn+1 − fn) therefore

I(f) ≤
∞
∑

1

I(fn+1 − fn) = lim I(fn)

Since f ≥ fn for every n

I(f) ≥ I(fn) = I(fn)

Therefore I(f) ≥ lim I(fn) hence the result.

Theorem (Fatou’s Lemma) Let fn be a sequence of non-negative inte-
grable (∈ L1) functions. Then inf fn ∈ L′. If limI(fn) < ∞ then
limfn ∈ L′ and

I(limfn) ≤ limI(fn)
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Proof Define gn = f1 ∧ f2 ∧ . . . ∧ fn

gn ∈ L′ and gn ↓ inf fn therefore −gn ↑ − inf fn therefore − inf fn ∈ L′

therefore inf fn ∈ L′.

Define h+ n = infr≥n fr hn ∈ L′

hn ↑ limfn therefore provided limI(fn) <∞ limfn ∈ L′

I(hn) ≤ I(fr) r ≥ n

therefore I(hn) ≤ limI(fn)

therefore I(limhn) ≤ limI(fn)

Theorem (Dominated Convergence) If {fn} is a sequence of integrable
functions such that |fn| ≤ g for some g ∈ L′, for every n and if fn → f

as n→∞ then f ∈ L′ and I(fn)→ I(f) as n→∞.

Proof o ≤ g + fn ≤ 2g therefore applying Fatou’s Lemma to this sequence

I(lim|g + fn) ≤ limI(g + fn)

therefore I(g + f) ≤ I(g) + limI(fn) f ∈ L′

therefore I(f) ≤ limI(fn)

therefore I(−f) ≤ limI(−fn)

= −limI(fn)

therefore I(f) ≥ limI(fn)

Hence the result.

this approach ties up with the measure approach in the following sort
of way.

f ≥ 0 f : X → R. f is said to be measurable if f ∧ g ∈ L′ for every
g ∈ L′.

The measurable functions constitute a vector lattice in which lim fn

is measurable. A subset Y of x is called a measurable set if XY is a
measurable function. The measurable sets constitute a σ-algebra of
sets. If we assume that f ∧ 1 ∈ L′ then {x : f(x) > a} is measurable.
If we define µ(Y ) = I(XY ) then for f ∈ L′

∫

f dµ = I(f).

4


