FUNCTIONAL ANALYSIS
INTEGRATION-FUNCTIONAL APPROACH

The starting-point is a vector lattice L of functions defined on a space X.

We have a functional I defined on L with the following properties

() [:L—R

(ii) 7 is linear on L
(iii) f>0=1I1(f)>0
() 1F fu L0 () — 0

we now extend I to a wider class of functions U = {g: X — R: f, 1 ¢
for some sequence.}

Suppose f, T g and g, T g where {f,}{g.} € L.
For every ng

frn 2 fa N Gng T gny @s n — oo therefore

I(gne) = Hm I(fo A gny) < I(fn)

Hence lim I(g,,) < lim I(f,).
Similarly lim I(g,,) > lim I(f,,). Therefore

lim I(g,) = im I(f,) =% I,
U is no longer a vector lattice, but it has the following properties:

(i) f,geU= f+geU
(i) feUc>0=cfeU
(iii) f,geU=fVvgfArgel.

We have the following results.

If g, > 0and g, C U and if > g, = g then ¢ C U and I(g) = X Igy,
for g > 09 C U < 3{f,} C L such that f, > 0and g =>7°f,. In
this case I(g) = > I f,.

If g, > 0and g, C U and if g = lim g,, then ¢ C U and I(g) = lim I(g,).
We now extend the definition of I to a different class of functions.

Define



I(h) = inf{I(g) ge U g=>nh}
I(h) = —I(=h)

() T(f +9) <
(ii) T(cf) = eI(f) c
(ifi) £ < g = T(f) < T(g) and L(f) < L(g)
(iv) I() <T()).

for 0 = 100) = I(f — f) < I(f) + I(—f) therefore I(f) = —I(—f) <

Theorem If f € U I(f) = I(f) = I(f).

Proof If f € U clearly I(f) = I(f).

I f.} C L such that f, T f therfore —f, | —f

therefore I(f) > I(f)

Hence the result.

Theorem If f, is a sequence of non-negative functions and f =" f,

I(f) <Y I(fa)-

Proof Suppose without loss of generality 3" I(f,) < oco.

Given € > 0, for each n we can find g, € U such that g, > f, and
I(gn) < I(fn) + 5=
Ifg=2%gn geUg=fso

Ig) < > I(f) +e¢
therefore I(f) < > I(fa)+e¢
therefore I(f) < Y I(fn)

2



Define L' = {f : I(f) = LI(f) < oo}.

L’ contains all functions of U on which [ is finite. L' C L.

If f e L define I(f) =1(f) = L(f).

L' is a vector lattice.

Let o=+ Aor V.

Let f,ge L', >0

3fi for €U foe U fo < f< fiand I(f1) +1(—f2) <e.
391 92: 91 €U gp € ~U go < g< g1, and I(g1) + I(—g2) <e¢

Joog< fog< fiog fiogi €U frog €=U
I(fiog) + I(—f2092) < I(f1— f2) +1(g1 —g2) < 2¢

Therefore fog e L'

Scalar multiplication is trivial.

Theorem If {f,} is an increasing sequence of functions in L', if lim I(f,,) <

oo and if = lim f,, then f € L' and I(f) = lim(f,).

Proof We may suppose that f1 =0 f = >9(fus1 — fn) therefore

)< S I(furs — fu) = lim I(f,)

Since f > f, for every n

Therefore I(f) > lim I(f,) hence the result.

Theorem (Fatou’s Lemma) Let f,, be a sequence of non-negative inte-

grable (€ Lp) functions. Then inf f,, € L. If lim/(f,) < oo then
limf, € L' and

I(limf,) < Lm/(f,)



Proof Define g, = fi NfoA... A [y

gn, € L' and g, | inf f,, therefore —g,, T —inf f,, therefore —inf f,, € L’
therefore inf f,, € L'.

Define h +n =inf,>, f. h, € L’
hyn T limf, therefore provided lim/(f,) < oo limf, € L’

therefore I(h,) < lmI(f,)
therefore I(limh,) < lLml/(f,)

Theorem (Dominated Convergence) If {f,} is a sequence of integrable
functions such that | f,,| < g for some g € L', for every n and if f,, — f
as n — oo then f € L' and I(f,) — I(f) as n — oc.

Proof o < g+ f, < 2g therefore applying Fatou’s Lemma to this sequence

I(limlg + f») < LmI(g+ fy)
therefore I(g+ f) < I(g)+UmI(f,) feL’
therefore I(f) < LmI(f,)
therefore I(—f) < lmI(—f,)
= _mj(fn)
therefore I(f) > LmI(f,)

Hence the result.

this approach ties up with the measure approach in the following sort
of way.

f>0f:X — R. fissaid to be measurable if f A g € L’ for every
gel.

The measurable functions constitute a vector lattice in which lim f,
is measurable. A subset Y of z is called a measurable set if Xy is a
measurable function. The measurable sets constitute a o-algebra of
sets. If we assume that f A1 € L' then {x : f(z) > a} is measurable.
If we define u(Y') = I(Xy) then for f € L' [ fdu = I(f).



