Question

Set $G = \operatorname{stab}_{\text{M\"ob}}(\infty) = \{m \in \text{M\"ob} \mid m(\infty) = \infty\}$. Write down a set of generating elements for G.

Let $\eta(z)$ |dz| be an element of arc-length on **C** which is invariant under G. Prove that η is constant.

Answer

If $m(z) = \frac{az+b}{cz+d} \in \text{M\"ob}^+$ and $m(\infty) = \infty$, then c = 0, and so $m(z) = \alpha z + \beta$. Generators of this are $\{P_{\beta}(z) = z + \beta | \beta \in \mathbf{C} \text{ and } \mathbf{L}_{\alpha}(z) = \alpha z | \alpha \in \mathbf{C} - \{0\}\}$. Note that $C(z) = \bar{z}$ also fixes ∞ , and so if $n(z) = \frac{a\bar{z}+b}{c\bar{z}+d}$ fixes ∞ , then $C \circ n(z)$ fixes ∞ , and so is as above.

So, generators for G are:

$$P_{\beta}(z) = z + \beta; \ \beta \in \mathbf{C}$$

 $L_{\alpha}(z) = \alpha(z); \ \alpha \in \mathbf{C} - \{0\}$
 $C(z) = \bar{z}$

 $\eta(z)|dz|$ invariant under $G, f:[a,b] \longrightarrow \mathbf{C}$ a path

length(f) =
$$\int_{f} \eta(z) |dz|$$

= $\int_{P_{\beta} \circ f} \eta(z) |dz|$
= $\int_{a}^{b} \eta(P_{\beta} \circ f(t)) |(P_{\beta} \circ f)'(t)| dt$
= $\int_{a}^{b} \eta(f(t) + \beta) |f'(t)| dt$
= $\int_{a}^{b} \eta(P_{\beta} \circ f(t)) |f'(t)| dt$
= $\int_{f}^{b} \eta \circ P_{\beta}(z) |dz|$.

and so $\eta(z) = \eta \circ P_{\beta}(z) = \eta(z+\beta)$ all $\beta \in \mathbb{C}$. So, given ω , $z \in \mathbb{C}$, set $\beta = \omega - z$ and note that $\eta(z) = \eta(z+\beta) = \eta(\omega)$ and to η is constant.