Question

State the maximum Modulus Principle for a non-constant function f(z) that is analytic within a simple closed contour γ and continuous on γ .

Show that if $f(z) \neq 0$ for all z within and on γ then the minimum value of |f(z)| cannot be achieved in the interior of γ .

By considering the function $e^{f(z)}$ show that no non-constant harmonic function can achieve its maximum or minimum values in the interior of γ .

Hence find the maximum and minimum values of $x^3 - 3xy^2$ in the set $\{(x,y)|x^2+y^2\leq 1\}$ and find where the bounds are attained.

Answer

Statement of max mod. Proof of min mod applies max mod to $\frac{1}{f(z)}$ - bookwork

Let u be harmonic. Find a harmonic conjugate v so that f(z) = u + iv is analytic.

Now
$$|e^{f(z)}| = e^u$$
 so $e^{f(z)} \neq 0$

Thus $|e^{f(z)}|$ achieves its max and min on γ .

Now e^u is an increasing function of u, so u achieves its max and min on γ . Let $u(x,y) = x^3 - 3xy^2$, then $u_{xx} = 6x$ and $u_{yy} = -6x$, so u is harmonic. So

the unit disc u achieves max and min on γ , i.e. where $y^2 = 1 - x^2$.

So
$$u(x, 1 - x^2) = x^3 - 3x(1 - x^2) = 4x^3 - 3x = h(x)$$
 $-1 \le x \le 1$ $h'(x) = 12x^2 - 3 = 0$ where $4x^2 = 1$ i.e. $x = \pm \frac{1}{2}$ $h''(x) = 24x$ $= 1$ oat $x = \frac{1}{2}$ $= 1$ ocal minimum $= 1$ oat $x = -\frac{1}{2}$ $= 1$ ocal maximum

$$h''(x) = 24x$$
 > 0 at $x = \frac{1}{2}$ — a local minimum
 < 0 at $x = -\frac{1}{2}$ — a local maximum

$$h(\frac{1}{2}) = -1$$
 $h(-\frac{1}{2}) = 1$

 $h(\frac{1}{2})=-1 \qquad h(-\frac{1}{2})=1$ At the end points $h(-1)=-1 \qquad h(1)=1$

so u achieves max values at $\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ and (1,0)

and u achieves min values at $\left(\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ and (-1,0).