Vector Functions and Curves One variable functions

Question

Show that $\underline{r} = \underline{r}_0 \cos(\omega t) + (\underline{v}_0/\omega) \sin(\omega t)$ satisfies the initial-value problem.

$$\frac{d^2\underline{r}}{dt^2} = -\omega^2\underline{r}$$

$$\underline{r}'(0) = \underline{v}_0$$

$$\underline{r}(0) = \underline{r}_0$$

In this case, describe the path $\underline{r}(t)$ and determine what happens to the paths if \underline{r}_0 is perpendicular to \underline{v}_0 .

Answer

$$\underline{r} = \underline{r}_0 \cos \omega t + \left(\frac{\underline{v}_0}{\omega}\right) \sin \omega t$$

$$\Rightarrow \frac{d\underline{r}}{dt} = -\omega \underline{r}_0 \sin \omega t + \underline{v}_0 \cos \omega t$$

$$\Rightarrow \frac{d^2\underline{r}}{dt^2} = -\omega^2 \underline{r}_0 \cos \omega t - \omega \underline{v}_0 \sin \omega t$$

$$= -\omega^2\underline{r}$$

$$\underline{r}(0) = \underline{r}_0, \qquad \frac{d\underline{r}}{dt}\Big|_{t=0} = \underline{v}_0$$

See that $\underline{r} \bullet (\underline{r}_0 \times \underline{v}_0)$ for all t.

So the path lies in a plane through the origin with normal

$$\underline{N} = \underline{r}_0 \times \underline{v}_0.$$

So choose the system of coordinates so that

$$\underline{r}_0 = a\underline{i} \qquad (a > 0)$$

$$\underline{v}_0 = \omega b\underline{i} + \omega c\underline{j} \qquad (c > 0)$$

 $\Rightarrow \underline{N}$ is in the direction of \underline{k} .

Parameterization of the path gives

$$x = a\cos\omega t + b\sin\omega t$$
$$y = c\sin\omega t$$

The curve has the quadratic equation

$$\frac{1}{a^2}\left(x - \frac{by}{c}\right)^2 + \frac{y^2}{c^2} = 1$$

so it is a conic section. As the path is bounded by

$$|\underline{r}(t)| \le |\underline{r}_0| + (|\underline{v}_0|/\omega)$$

it must be an ellipse.

If \underline{v}_0 is perpendicular to \underline{v}_0 , then b=0, making the path an ellipse with equation

$$(x/a)^2 + (y/c)^2 = 1$$

and semi-axes $a=|\underline{r}_0|$ and $c=|\underline{v}_0|/\omega.$