QUESTION

Solve the following linear programming problem using the bounded variable simplex method.

```
Maximize z = -13x_1 + 10x_2 + 8x_3 - 10x_4 - 22x_5

subject to -2x_1 + x_2 + 4x_3 - 2x_4 - 2x_5 \le 5

-4x_1 + 2x_2 + x_3 - 2x_4 - 6x_5 \le 13

0 \le x_1 \le 1

0 \le x_2 \le 20

0 \le x_3 \le 4

0 \le x_4 \le 3

0 \le x_5 \le 5.
```

- (i) For the first constraint, give the range of values for the right-hand side within which the optimal basis remains unaltered. Also, perform this ranging analysis for the upper bound constraint $x_4 \leq 3$.
- (ii) If the objective function coefficient of x_2 changes to $10+\delta$, for what range of values of δ is the change in the maximum value of z proportional to δ ?

ANSWER

Add slack variables $s_1 \geq 0$, $s_2 \geq 0$ and use the bound variable simplex method.

Basic	z	x_1	x_2	x_3	x_4	x_5	s_1	s_2		Ratio
$\overline{s_1}$	0	-2	1	4	-2	-2	1	0	5	5
s_2	0	-4	2	1	-2	-6	0	1	13	$\frac{13}{2}$
	1	3	-10	-8	10	22	0	0	0	2
Basic	z'	x_1	x_2	x_3	x_4	x_5	s_1	s_2		Ratio
$\overline{x_2}$	0	-2	1	4	-2	-2	1	0	5	$\frac{15}{2}$
s_2	0	0	0	-7	2	-2	-2	1	3	$\frac{2}{3}$
	1	-7	0	32	-10	2	10	0	50	
Basic	z'	x_1	x_2	x_3	x_4	x_5	s_1	s_2	•	Ratio
$\overline{x_2}$	0	-2	1	-3	0	-4	-1	1	8	3
x_4	0	0	0	$-\frac{7}{2}$	1	-1	-1	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
	1	-7	0	-3	0	-8	0	5	65	

Make substitution $x'_4 = 3 - x_4$

Basic
$$\begin{vmatrix} z & x_1 & x_2 & x_3 & x_4' & x_5' & s_1 & s_2 \end{vmatrix}$$
 $\begin{vmatrix} x_2 & 0 & -2 & 1 & 11 & 4 & 0 & 3 & -1 & 2+12=14 \\ x_5 & 0 & 0 & 0 & \frac{7}{2} & 1 & 1 & 1 & -\frac{1}{2} & -\frac{3}{2} + 3 = \frac{3}{2} \\ 1 & -7 & 0 & 25 & 8 & 0 & 8 & 1 & 53+24=77 \end{vmatrix}$

Make substitution $x_1' = 1 - x_1$

Basic
 z

$$x'_1$$
 x_2
 x_3
 x'_4
 x_5
 s_1
 s_2
 x_2
 0
 2
 1
 11
 4
 0
 3
 -1
 16

 x_5
 0
 0
 0
 $\frac{7}{2}$
 1
 1
 1
 $-\frac{1}{2}$
 $\frac{3}{2}$

 1
 7
 0
 25
 8
 0
 8
 1
 84

Optimal solution

$$x_1$$
; = 0 x_2 = 16 x_3 = 0 x'_4 = 0 x_5 = $\frac{3}{2}$

$$x_1 = 1$$
 $x_2 = 16$ $x_3 = 0$ $x_4 = 3$ $x_5 = \frac{3}{2}$ $z = 84$

(i) If the right-hand side of the first constraint is $5 + \delta$, the right hand sides in the final tableau are $16 + 3\delta \frac{3}{2} + \delta$.

For non-negativity $16 + 3\delta \ge 0$, $\delta \ge -\frac{16}{3}$, $\frac{3}{2} + \delta \ge 0$ $\delta \ge -\frac{3}{2}$

For variables to remain within bounds $16+3\delta \le 20$ $\delta \le \frac{4}{3}, \frac{3}{2}+\delta \le 5$ $\delta \le \frac{7}{2}$

Therefore the required range is $-\frac{3}{2} \le \delta \le \frac{4}{3}$

If the upper bound constraint is $x_4 \leq 3 + \delta$, then the right-hand sides in the final tableau become $16 + 4\delta$, $\frac{3}{2} + \delta$.

For non negativity, $16+4\delta \geq 0$ $\delta \geq -4$, $\frac{3}{2}+\delta \geq 0$ $\delta \geq -\frac{3}{2}$

For variables to remain within their lower bounds $16+4\delta \le 20~\delta \le 1,~\frac{3}{2}+\delta \le 5~\delta \le \frac{7}{2}$

Therefore the required range is $-\frac{3}{2} \le \delta \le 1$

(ii) The z row of the final tableau becomes

$$7 + 2\delta = 0 - 25 + 11\delta = 8 + 4\delta = 0 - 8 + 3\delta = 1 - \delta = 84 + 16\delta$$

For non-negativity $-2 \le \delta \le 1$