QUESTION

Using the results of question 4, suppose you want to retire in 35 years time with a total pension fund of £250,000 (or equivalent Euros/Dollars...). Calculate your pension payments assuming annual compounding, assuming annual growths of

- (a) 5%
- **(b)** 15%

This question should teach you never to be an academic. ANSWER

(a)
$$T = 35$$
, $F_T = 250,000$, $r = 5\%$
Annual compounding: $d = \frac{250,000 \times 0.05}{(1.05)^{35} - 1} = 2767.93$
m-compounding, say $m = 2$: $d = 250,000 \left\{ \frac{\left(1 + \frac{0.05}{2}\right)^2 - 1}{\left(1 + \frac{0.05}{2}\right)^{70} - 1} \right\} = 2732.29$
continuous compounding: $d = \frac{250,000(e^{0.05} - 1)}{(e^{0.05435} - 1)} = 2695.87$

(b)
$$T = 35$$
, $F_T = 250,000$, $r = 15\%$
Annual compounding: $d = \frac{250,000 \times 0.15}{(1.15)^{35} - 1} = 283.71$
m-compounding, say $m = 2$: $d = 250,000 \left\{ \frac{\left(1 + \frac{0.15}{2}\right)^2 - 1}{\left(1 + \frac{0.15}{2}\right)^{70} - 1} \right\} = 247.85$
continuous compounding: $d = \frac{250,000(e^{0.15} - 1)}{(e^{0.15} \times 35 - 1)} = 213.43$
Note that there is a factor of 10 difference in payments if return con be increased from 5% to 15%. 5% is probably more likely over 35 years!