Question

Suppose $f: \mathbf{R^n} \to \mathbf{R^*}$ is measurable and $m(S) < \infty$. Suppose also that $A \leq f(x) \leq B$ a.e in S.

Show that f is integrable over S and that $Am(S) \leq \int_S f \leq Bm(S)$

Answer

Let
$$g(x) = f(x)$$
 if $A \le f(x) \le B$ but $g(x) = A$ otherwise.
Then $\int_S A = \int AX_S \le \int gX_S = \int_S g \le \int BX_S = \int_S B$
 $Am(S) = \int_S A = \int_S g = \int_S f \le \int_S B = Bm(S)$