Question

Let D_s be the hyperbolic disc in the Poincaré disc **D** with hyperbolic radius s, and let C_s be the hyperbolic circle with hyperbolic radius s that bounds D_s . Describe the behavior of the quotient

$$q(s) = \frac{\operatorname{length}_{\mathbf{D}}(C_s)}{\operatorname{area}_{\mathbf{D}}(D_s)}$$

as $s \to 0$ and as $s \to \infty$.

Compare the behavior of q with the analogous quantity calculated using a Euclidean disc and a Euclidean circle.

Answer

We know from exercise sheet 8 that length_{**D**}(\mathbf{C}_s) = $2\pi \sinh(s)$. To calculate $\operatorname{area}_{\mathbf{D}}(\mathbf{D}_s)$:

Recall that the euclidean radius of \mathbf{D}_s is $R = \tanh(\frac{1}{2}s)$, and so

$$area_{\mathbf{D}}(\mathbf{D}_{s}) = \int_{0}^{2\pi} \int_{0}^{R} \frac{4}{(1 - |z|^{2})^{2}} dx dy$$

$$= \int_{0}^{2\pi} \int_{0}^{R} \frac{4r dr d\theta}{(1 - r^{2})^{2}}$$

$$= 8\pi \int_{0}^{R} \frac{r dr}{(1 - r^{2})^{2}}$$

$$= 8\pi \left[\frac{1}{2} (1 - r^{2}) \right]_{0}^{R}$$

$$= 8\pi \left(\frac{1}{2(1 - R^{2})} - \frac{1}{2} \right)$$

$$= \frac{4\pi}{1 - R^{2}} - 4\pi$$

$$= \frac{4\pi (1 - 1 + R^{2})}{1 - R^{2}}$$

$$= \frac{4\pi \tanh^{2}(\frac{1}{2}s)}{1 - \tanh^{2}(\frac{1}{2}s)}$$

$$= 4\pi \sinh^{2}(\frac{1}{2}s)$$

and so

$$q(s) = \frac{\text{length}_{\mathbf{D}}(C_s)}{\text{area}_{\mathbf{D}}(D_s)} = \frac{2\pi \sinh(s)}{4\pi \sinh^2(\frac{1}{2}s)}$$

$$= \frac{4\pi \sinh(\frac{1}{2}s) \cosh(\frac{1}{2}s)}{4\pi \sinh^2(\frac{1}{2}s)}$$

$$= \frac{\cosh(\frac{1}{2}s)}{\sinh(\frac{1}{2}2)}$$

$$= \frac{e^{\frac{1}{2}s} + e^{\frac{-1}{2}s}}{e^{\frac{1}{2}s} - e^{\frac{-1}{2}s}}$$

$$= \frac{e^s + 1}{e^s - 1}$$

as
$$s \to \infty$$
, $q(s) \to 1$.
as $s \to 0^+$, $q(s) \to \infty$ (since numerator $\to 2$ and denominator $\to 0$.)

The analogous euclidean quantity is

$$q_E(s) = \frac{\text{length}_{\mathbf{D}}(C_s)}{\text{area}_{\mathbf{D}}(D_s)} = \frac{2\pi s}{\pi s^2} = \frac{2}{s}$$

as
$$s \to \infty$$
, $q_E(s) \to 0$ (different from $q(s)$).
as $s \to 0^+$, $q_E(s) \to \infty$ (as $q(s)$)