Question

Describe in geometrical terms the transformations defined by the following matrices. What effect do these transformations have on

- (i) The square with vertices $(\pm 1, \pm 1)$,
- (ii) the unit circle?

(a)
$$\begin{pmatrix} 4 & -6 \\ 6 & 4 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 4 & 6 \\ -6 & 4 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

(d)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

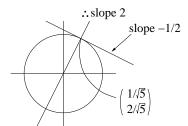
(e)
$$\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$

Answer

(a)
$$\begin{vmatrix} 4 & -6 \\ 6 & 4 \end{vmatrix} = 52$$

$$\begin{pmatrix} 4 & -6 \\ 6 & 4 \end{pmatrix} = \sqrt{52} \begin{pmatrix} \frac{4}{\sqrt{52}} & \frac{-6}{\sqrt{52}} \\ \frac{6}{\sqrt{52}} & \frac{4}{\sqrt{52}} \end{pmatrix} = 52$$

So the matrix performs a magnification by a factor $\sqrt{52}$ and a rotation anticlockwise through $\cos^{-1}\frac{4}{\sqrt{52}}$


$$\begin{pmatrix} 4 & -6 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 10 & -10 & 2 \\ 10 & 2 & -2 & -10 \end{pmatrix}$$
$$x^2 + y^2 = 1 \rightarrow X^2 + Y^2 = 52$$

(b)
$$\begin{pmatrix} 4 & 6 \\ -6 & 4 \end{pmatrix} = \sqrt{52} \begin{pmatrix} \frac{4}{\sqrt{52}} & \frac{6}{\sqrt{52}} \\ \frac{-6}{\sqrt{52}} & \frac{4}{\sqrt{52}} \end{pmatrix} = 52$$

So the matrix performs a magnification by a factor $\sqrt{52}$ and a rotation clockwise through $\cos^{-1}\frac{4}{\sqrt{52}}$

(c)
$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ Y \end{pmatrix} = \begin{pmatrix} x+2y \\ 2x+4y \end{pmatrix}$$
 So $\mathbf{R}^2 \to Y = 2X$

The inverse image of (k, 2k) is the line x + 2y = k. For the square the extremities of the image are $(\pm 3, \pm 6)$

So the extremities are

$$\left(\pm\frac{5}{\sqrt{5}}, \pm\frac{10}{\sqrt{5}}\right) = \left(\pm\sqrt{5}, \pm2\sqrt{5}\right)$$

(d) Rotation through 45° anitclockwise

(e)
$$\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 & -1 \\ 2 & 0 & 0 & -2 \end{pmatrix}$$

Gives a magnification and shear.

$$x = \frac{1}{2}X \qquad y = -\frac{1}{2}X + Y$$

$$x^2 + y^2 = 1 \rightarrow \frac{1}{2}X^2 - XY + Y^2 = 1$$
 - ellipse.