Question

Suppose that S_t , $t\epsilon(a,b)$ is a family of sets indexed by t. Suppose also that $t_1 < t_2 \Rightarrow S_{t_1} \subseteq S_{t_2}$. Prove that if S_t is measurable for each $t \in (a,b)$, then

$$\bigcup_{t \in (a,b)} S_t \text{ is measurable, and that } m\left(\bigcup_{t \in (a,b)} S_t\right) = \lim_{t \to b^-} m(S_t)$$

Formulate and prove a corresponding result involving intersections.

Answer

Let $\{t_n\}$ be an arbitrary increasing sequence converging to b-.

Then
$$S_{t_1} \subseteq S_{t_2} \subseteq \cdots \subseteq S_{t_n} \subseteq \cdots$$

Then
$$S_{t_1} \subseteq S_{t_2} \subseteq \cdots \subseteq S_{t_n} \subseteq \cdots$$

and so $\lim_{n \to \infty} m(S_{t_n}) = m \left(\bigcup_{n=1}^{\infty} S_{t_n} \right)$

Now
$$\lim_{n\to\infty} m(S_{t_n}) = \lim_{t\to b^-} m(S_t)$$

Since t_n is an arbitrary sequence.

Also
$$\bigcup_{n=1}^{\infty} S_{t_n} = \bigcup_{t \in (a,b)} S_t$$
, for \subseteq obvious if $x \in \bigcup S_t$, there exists $t \in (a,b)$, $x \in S_t$

if
$$x \in \bigcup_{t \in (a,b)} S_t$$
, there exists $t \in (a,b)$, $x \in S_t$

there exists n, with $t_n > t$, therefore $x \in S_{t_n}$ therefore $x \in \bigcup_{n=1}^{\infty} S_{t_n}$ therefore \supseteq . Hence equality

Thus
$$m\left(\bigcup_{t \in (a,b)} S_t\right) = \lim_{t \to b^-} m(S_t)$$

For intersections

$$m\left(\bigcap_{t\in(a,b)} S_t\right) = \lim_{t\to a+} m(S_t)$$