Sturm - Liouville

Sturm - Liouville systems

(Zs (k:(x)ji) +(Ag() —lz)y = 0 a<z<b (1)
ary(a) + agy(b) + azy'(a)auy'(b) = 0 (2)
Bry(a) + Bay(b) + B3y’ (a) + Say' (D) = 0 (3)

The above relations comprise a Sturm-Liouville system: X is a parameter to
be determined. The relation (2) and (3) are linearly independent i.e. the
vectors (o, g, g, ); (61, Be, O3, B4) are linearly independent.

Examples

1. String with tension 7T'(z) and density m(z) variable along the string,
and subject to a transverse restoring force of magnitude s(x) per unit
length per unit transverse displacement. For displacement to varying
with time as coswt we find:

* (t(x)j—i) ; (‘C”—jm(x) - s(ac)) y=0

end conditions e.g. y(0) = 0
y(l) = 0

2. Thermally conducting bar with slowly varying cross section A(x), heat
loss along the surface h(x) per unit length, no internal generation of
heat. Variable conductivity K(z). Variable heat capacity c¢(x)/unit
vol.

d dy
i [FA@E] + ete) = hely =0

for solutions with a time variation ae ?* and appropriate end condi-
tions.



Existence and Uniqueness of a Solution of a Linear Second Order Equation

y' (@) +q(@)y () + r(z)y(r) = 0
q(z), r(x) continuous in a < x < b
y(a), y'(a) assigned arbitrary.

Define the vector w = | '

Wa
Let norm w = ||w|| = |wi| + |wz| =0 w =0
[wr ]| + l[wal| = [Jw: + ws|
It M = ZS :Z;; and ¢ = 2 max |m;|
[Mwl] < ¢f|w]]

o= (4 [ = i

/; wl(t)dt‘ +

j wl(t)dt‘ 4
= [ lwa

Now define v(x) = y/(x) then v/'(z) = —(z)v(z) — r(z)y(x)

define w(x (yx >
v(x)

/a ’ wg(t)dt’
/a ’ wg(t)dt’

A(z)w()
(0 1)

Let c(x —2max{,|r ||q()|}a§x§b
Let w(a) = o = < y(<a>) ) c= sup c(x)

From (2), integrating from a to z

x):oz—F/CEAtwtdt

[This is a vector intrgral equation]
Define the iterant w*(x) &k =0,1,... by w’(z) = «
wl(z) = a+ [TAR) +wh(t)dt k=0,1,...

1. By induction the w* all exist and are continuous in [a, b]
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2. By induction on the equation
W @) = wh(@) = [ AW - wt ()
we can show that

[ () — wh ()] < []o]|=

3. We then have

> |Jw* T (z) — w”(z)|| converges uniformly in [a, b]
k=0

therefore Y (w*™!(z) — w*(z)) converges uniformly in [a, b]
k=0

W) = ot L) @)

Hence lim w*(z) exists = w(z) uniformly in [a, b] and w(z) is contin-

k—oo

uous in [a, b] letting k — oo in equation (5) we get
w(z) = a+ / A(t)w(t)dt

RHS is differentiable , therefore

Uniqueness
Assume that z(x) is a solution, continuous and bounded in [a,b], of the
integral equation

o) = a+ [ AW
W) = at [ At
(@)~ 2e) = [T AD@HE) - ()l
By induction we can show that

mc(z — a)]

[[w'(z) = 2(@)]| < =



where m = bd||z(z) — a|| in [a, b]

Therefore klim ||w”(x) — z(x)|| = 0 uniformly in [a, b]
Therefore ||w(z) — z(x)|| = 0 ie. |w(x) = z(x)

(po > 0, pop1p2 continuous in [a, b])
A solution of L(y) = 0 exists in [a,b] such that y(v), y'(c) have arbitrary
values, ¢ € [a,b] and this solution is unique.

Wronskian of two solutions

If u(z), v(zx), v'(x), v'(x) are continuous then

_ u(r) v(x)
W =er < W(z) () )
is the Wronskian determinant.

(i) W =0in [a,b] is the necessary and sufficient condition that u and v are
linearly dependent.

(ii) W # 0 in [a, b] is the necessary and sufficient condition that v and v are
linearly independent.

If now L(u) =0 L(v) =0

0 = wvl(u)—ulL(v)

= po(vu” —v"u) + pi(vu' — v'u)

= po— (vu' —v'u) + py (v’ — v'u)

dx
Write 0
P
p(z) = exp dt
a po(t)
/
therefore P(z) _n (z)
px po(z) o
Therefore the above equation is
pi(vu' —v'u) +p'(vu' —v'u) =0
dx
i.e. p(vu’ — v'u) =constant.
ie. u/ , | =constant.
u v




= py(2)
a po(t)

Therefore p(z) = exp

dt is bounded in [a.b].
* pa(t)

a po(t)

dt > 0 in [a, b]
Hence
i W=0atz=ce€la,b)j]=W=0a<2<b

(i) W#0atz=ce€a,b)]=W#0a<z <D

Example of choice of linearly independent solutions.
w(z): u(a)=1 u(a)=0
v(x): wva)=0 v'(a)=1

10
W(u,v):‘o 1
a<x<b

= 1 # 0 therefore u, v, are linearly independent in

Fundamental System of solutions

Definition Any pair u(x), v(x) of linearly independent solutions constitute a
fundamental system.

Theorem Any solution of L(y) = 0 is of the form y = Au + Bv

Proof We can choose A, B such that y(c), y'(c) have any assigned values, ¢
in [a, b]

y(c) = Au(c) + Bu(c)

y(©) = Au(c)+Bv(c)

g,((cc)) :}J,<(Cc) | # 0 therefore A and B are uniquely determined.
Consider z(z) = y(z) — Au(z) — Bv(x)

L(z)=0 -(i) as L is linear.

z2(c) =0

2'(c) =0 -()
(i) and (ii) are satisfied by z = 0, Therefore by the uniqueness theorem this
is the only solution.
Therefore 2 =0 a<x<b
Therefore y(z) = A-u(z)+ B-v(z) a<z<b



Adjoint (2nd order) linear differential operators
L(u) = (poD* + p1D + py)u (1)

Let v = v(z), v'(x) v"(x) exist.

vL(u) = wvpyD*u+ vp,Du + vpou
vp0D2(u) = uD2(vp0) + DlvpoDu — uD(vpy)]

vpyDu = —uD(vpy) + D(vpiu)
Hence vL(U) = u[D*(vpy) — D(vp1) + vpa] + D[vpo Du — uD(vpy) + vpyu]
Write M (v) = D*(vpy) — D(vp1) + vps (2)
M (v) = poD*v + (2pf — p1) Dv + (pf — P + p2)v (3)
vL(u) —uM(v) = d—(vpou’ — u(pov” + pyv) + pruv)

(4)
= (e ') + (o1 — )
M is said to be the adjoint of L in view of the form of R.H.S. Also L = adj M

Self adjoint Operator
Definition L is self adjoint if M = L

From (1) and 93) the necessary and sufficient condition is p; = pj,

d d
then L(u) = e (p()é) + pau

d

If L is self adjoint the from (4) vL(u) —uL(v) = d—po(vu' —u'v)
T

Reduction to self-adjoint form

if L =poD?+p1D + ps

Define p(x) = exp /ax Z)Ei;dt (po > 0 in [a, b])

Theq (%) _ ()

p(z)  po(z)
Hence

Lry) = (pd? +p'D+ 2??) y

_ A (4 pp
dx pd:z: poy
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Self adjoint System

d dy
L(y) =
(y) e ( dx) + qy

Suppose we have a self adjoint operator L. Consider the homogeneous sys-
tem:

Ly)=0 (a<z<b) (1)
0 =Ui(y) = ary(a) + bry'(a) + c1y(b) + diy(b) } @)
0 = Ua(y) = agy(a) + bay'(a) + c2y(b) + day(b)

[condition (2) constitutes 2-point boundary conditions]
Let u,v be any two functions such that «'v' are continuous in [a,b] (not
necessarily satisfying L(y) = 0)
d
vL(u) —uL(v) = d—p(vu’ —v'u)
x
Therefore

/;(ULU — ulv)dr = —p(b) u(a)  v(a) ’ (3)

u'(b) v'(b u'(a) v'(a)

Definition The boundary conditions (2) are said to be self-adjoint if R.H.S
of (3) vanishes whenever u and v satisfy (2) i.e. U;(v) =0, U;(v) =0i=1,2
and v and v are linearly independent.

u(b) v(b)) ‘—i—p(a)
)

Theorem The necessary and sufficient condition for this to occur is

a; b
:p(b) a; b;

¢ dy

P@)| ., 4,

Proof The equations U; = 0 VZ = 0 may be written:
a; b u(a) n c1 u(b)
as by u'(a) Co u'(b)
a; b v(a) L@ v(b) B
as by v'(a) Co b) -
AW, + BWy =0
Therefore AW, = —BW,
|Al[Wa| = [B[|W| (5)
(| — B| = |B| as B is of even order)

)
o) (e s,a) (o). &é s )=
Taking determinants:
Therefore p(a)|W,| = p(b)|W — b|



< pl(a)| Bl = p(B)|4]

Examples

0 3% (3 )= (a0)(2 )0

(string with fixed ends.)

o Sy (mn )= (0 ) ()=

(string with free ends.)

0
0

(iii) ‘Z,(&))::% (Z; Z;>:<(1) 8)(2 2):(8

(string with 1 fixed end, and 1 free end.)

o Yo =0 (o) () (4

(elasticity constrained ends.)

) y(a) —y(b) =0 ap by \ (10 c1 dy
y(a)—y'(b)=0 \ag b )] \0 1 ¢y dsy
(Periodic boundary conditions.)

In (i) - (iv) |A| = [B] =0
In (v) |A] = |B| =1 and we require p(a) = p(b)

Sturm Loiuville Systems

< (pj—y) + (Aa() — r(z))y = 0

where A is a parameter. i.e. L(y) — Ag(y) =0

L(y) = ;; (zﬁi) —r(z)y

We assume p > 0 in [a, b] (later also r > 0, ¢ > 0)

The boundary conditions are:

Ui(y) = ary(a) + biy'(a) + ciy(b) + diy(b) =0, i=1,2
The system is assumed to be self adjoint.

dy
da

)

)

)

0
1

0
1

)
)

(



Eigenvalues and Eigenfunctions

Let ,v be any linearly independent pair of solutions of

Ly)+Ag-y=0 (1)
Then any other solution y is a linear combination of u and v.

y(x) = au(x) + Pv(x) where @ and (§ are constants. Now U; and U, are
linear and homogeneous.

U1 = OéUl(U)—i‘ﬁUl(U)
U2 = C(UQ(U)‘i‘ﬁUQ(U)

Ui(y) =0 Us(y) = 0 gives

Ur(u) Ui(v) a
<UQ<u> Ua(v) ) ( 5 ) =0 @
For a non Utvri(vi)al %nglt)ion for a and beta the determint must vanish.

1\u 1\v

A=) o) |71 ¥
The determinant is a function of A since both y and v satisfy L(y) + Aqy = 0
ie. u=u(x,\) v=uv(z\)
Ui(u) = au(a, ) + bjug(a, \) + cu(b, ) + diu, (b, \)
and
U;(v) = a;v(a, A) + bjvg(a, ) + co(b, N) + d;vg (b, N)
The equation A(A) = 0 is the characteristic equation for A

Definition the value of A satisfying A(\) = 0 are the eigenvalue of the system.

When A = ), (an eigenvalue) there is a non-trivial solution for a, 3 from
(2) and the solution y = ¢, = ayu(z, \,) + Bu(z, Ay) is said to be the
eigenfunction belonging to \,. ¢, is uniquely determined apart from any
non-zero constant.

We assume

(1) There exists an infinite set A1, Ag, ... of eigenvalues.

(2) there exist only one linearly independent eigenfunction belonging to A,,.
This may not be true in special cases)

Example

1. Suppose the boundary condition is y(a) = 0, then y'(a) # 0. Suppose
¢’ ¢* were 2 linearly independent eigenfunctions belonging to .
¢'(a)
Let ¢° = ¢' — ¢
¢*(a)

¢*(a) = 0 as ¢'(a) = ¢(a) = 0



Also ¢"3(a) = 0. Therefore as L(¢3) + Aq(¢3) = 0
#3(x) = 0 in the whole interval. Therefore ¢’ = ¢? therefore (2) holds.

yY'+xy = 0 p=1lqg=1
y(0) = y(l)
y(0) = ()
The solution of the differential equation is
y = Acos ZA? + BsinzA2
Then

A = Acosi\? + Bsinl\?
AZB = Ai(—Asinl\? + Bsinl\?)

Hence (rejecting A = 0 as trivial) we have

cosfh —1 sin 6
—sinf  cosf —1

(1 —cosh)? +sin’f = 0
21—cos = 1 O=+2nt n=1,2,...

42
A = %nz n=12,...

For A = \,, the equations a for A and B are

0A+0B=0

0A+0B=0
i.e. A and B are arbitrary.

2 2

Therefore y = A cos nre + B nre is an eigenfunction belonging to
An
. 2nmx . 2n7mx . ) .
ie. cos , sin —— are eigenfunctions belonging to A, and are

[
linearly independent: (2) doesn’t hold.
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Independence of eigenvalues with respects to the choice of u and v

Let @, v be another linearly independent pair of solutions of L(y)+ Ag-y =0

U = 11U+ 190 C12
Then v = ool 220 c11, ... constant and o1 o # 0
U(u) = cnli(u) + cr2Us(a)
U(v) = calUi(v) +eUi(v) i=1,2

< a we )= (5 2) (56 56)

Ci1 C12 Ul(a) UQ(a)
Co1  C22 Uy (v) Us(v)
and |C| # 0 therefore A(A\) =0< A(N) =0

Taking determinants A(\) = = |C]A(N)

Example Uniform string under constant tension and with fixed ends, and no
restraining force.
The differential equation is

2

V' FAy=0 A==

C
Ui(y) =y(0) =0
Us(y) =y(l) =0

Two linearly independent solutions of the equation are

a=0,b=1=

U= cosT\? v = sinzA?
w@0) =1 w'(0)=0 v(0)=0 v'(0)=A2

A= ! 0

1
1 . 1 = SiIl l)\5
cos A2 sinlAz

Therefore the equation for A is sinl\z = 0= \ = ”752 -8 =1

Properties of eigenvalues and Eigenfunctions

We assume now that ¢(z) > 0, r(x) > 0 in [a,b] in addition to p(x) > 0 in
[a,b]

1. The eigenvalues are real

2. If ¢, ¢, belong to A\, Ay,

[ d@)u@)om(@ide =0 (om0

i.e. ¢1, ¢9,... are orthogonal over [a, b] with weighting function ¢(z)
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3. if the boundary conditions are suitably restricted (and p,q > 0r >0
in [a,b]) then the eigenvalues are positive

Proofs

1.
2. Let A\, A\, be any two eigenvalues and let ¢,,, ¢, belong to them. Then

L(¢n) + Mg = 0

b
/a {¢nL(¢m> - ¢mL(¢n)}dx = p(x)[qbngb;m - ¢m¢;]2
and the R.H.S =0 if the boundary conditions are self adjoint.

Therefore /b {0 L(Pm) — dmL(Pn) }dx =0
Therefore / {bmAngbn — OuAmgbmddz — 0
Therefore (A, — Ann) /b qPmdndr =0 (i)

b
Therefore / qOmbndr =0  m#n (ii)

(i) If A = p+io is an eigenvalue and ¢ = X +4Y is an eigenfunction
belonging to it then A is also an eigenvalue and ¢ will belong to it.

For L(¢) + A\qgp =0
= L(phi)+Xg-q=10
= L)+ Ag-d=0

Since L is a real linear operator and ¢ is real.

Also U;(¢) = 0= U;(¢) = 0 as U, is real and linear.
Hence in (i) above take A = A, and A = )\,
Then

_ b _
()\—)\/ goddr = 0
_ b
(=N [qlofdz = 0 g>0 |6| £0
therefore A — A = 0 i.e. \ is real.

12



L(¢n)+/\Q'¢n =0

b b
Therefore A, / qpidr = — / O L(¢y)dx

b b ,
therefore /\n/ agbidx = / (qu)i + ngﬁfl)dx - [pcbncb;]ﬁ

Therefore if the boundary conditions are such that
[pondr]s <0 X, >0

Examples

(i) y(a) =0 y(b) =0= ¢n(a) = ¢u(b) =0 and [pd,d}]; =0
(i) (@) =0 (b)) =0=¢,(a) = ¢,(b) =0 and [ppng}]; =0
(iii)
y'(a)—hyla) = 0  hy >0
~[ponsile = —p(0)(=hati (b)) + p(a)(hidi(a)) > 0

(iv) y(a) =y(b)  y'(a) =y'(b)
Here, with the condition for self adjointness p(a) = p(b), [p¢n¢.]% =0

13



Formal Explanations in Eigenfunctions

Consider the homogeneous system
d d
Ly)+Ag-y=0 (L 7’)

with eigenvalues A\, Ao, . ..
and eigenfunctions ¢1, ¢s . ..
We assume that the ¢,, have been normalised

b
ie. / q¢? dr =1

If a function F'(z) defined in [a, b] has a uniformly convergent expansion
1

then .
[ at@)om ) Flayie = A,

Consider the non-homogeneous system

Ly)+ Xy = f(o)

1. If X\ is not an eigenvalue of the homogeneous system the solution is
unique.

2. If A = A\, a necessary condition for existence of a solution is that

b
| @) f()dz =0
i.e. f must be orthogonal to ¢,,.

3. if A=\, and f is orthogonal to ¢,,, then the solution is not unique.
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Proofs

1. Suppose y and z are two solutions

Lly)+Aq-y = [(x) Uly) = 0 i=12
L(z)+ M-z = f(z) U(z) = 0 i=1,2
Lly—2)+Ag-(y—2) = 0 Uly—z) = 0 i=1.2

ie. L(y — z) is a solution of the homogeneous system. If X is not an
eigenvalue this must be zero. Therefore y = z in [a, b]

3. I N = A\, y— 2 = App(z) where A is an arbitrary constant i.e.
y = z + A¢,(x) and the solution is not unique.

b
2. [ [omL(y) = yL(om)ldz = [p@)[6my — llh =0
since y,¢,, satisfies the boundary conditions which are self adjoint. i.e.

/a [l f(®) = Aq-y} — y{—Angdm}]dz =0

b b
A= [ abmyde = [ of d M
Therefore \ is an eigenvalue i.e. A\ = \,,,
b
/ Smf dz = 0

Formal Series Solution

If we assume y has an expansion in eigenfunction we have from (1) above.

(A= An) /¢nfd:c_b

b
hence if A is not an eigenvalue a,, = X _n on= 1,2,
. b0 '
ey = > 25 o600
b
If)\:)\mthenan:ﬁ m#n
and 0 - a,, = 0 Therefore
/ O (8)f (&) dE + App(z), A arbitrary
n=1
n#m
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Stationary Property of Eigenvalues

When the boundary conditions are such that [p(z)yz)y (x)]? = 0 we have
Ja(pe;? +ro7)de

An = :
Ja adrdx

Write ,

16,0) = [ (060! +rév)da

b )

Jo.w) = [ aov
NN

" TP )
We suppose that ¢, are normalised i.e. J(¢p,, d,) =1
then A, = I(¢n-0n) (2)
Consider \, = I(¢, ¢) where J(¢,phi) =1 (3)
and

(i) ¢’ continuous in |a, b]
(ii) ¢ satisfied the boundary conditions

(it does not necessarily satisfies L(y) + Aq(y) = 0)

We show that A = I(¢, ¢) is stationary for small variations of ¢ from ¢,,. This
is the extremum property of the integral (¢, ¢) subject to the normalising
condition j(¢,¢ = 0 and to(z), (i7).

Write ¢(z) = ¢n(x) +€b(z), where € is a constant and 1 satisfies (¢) and also
the boundary conditions since U; is linear. We show that

I(¢¢> - I(¢n¢n> - O(E)

The normalising condition on ¢ is
1= J(¢,phi) = J($nty) + 2eJ($nt)) + € T (Y1)

1 =14 2eJ(pp0) + 2T (Y))
Therefore 2¢.J (¢p1)) + €2J (Y1) = 0

I(6n¢n)2e] ($nt)) + €1(¥0))
b
| w0t + v

1(¢¢)
1(¢n?)

/ ! b d /
= [p¢nwn]g + L {_¢%p¢n + T¢n¢}
0=[pod')s = [pondle + [ep(dnt + & 0))5 + [pod'],

16



From the self adjoint condition

[p(pnt) — ¥r0)]e = 0

Therefore
[po ) = [pont']) = 0
Therefore
b
16) = [ wl=L(@)) =0
b
= )\n/a qqun dl'
= A\ J(on?))
Therefore

I(9¢) = I(dntn) = 2eAd (dnt)) + € 1(Y0)
= S\ ()]

This establishes the stationary property.

Illustration

y'+Ay=0 y(0)=0 y(1)=0
The exact solution for Ay and ¢y is g1zsinmr A = w2 ~ 9.87

. ol .
The normalised ¢,7522 sin 7z

Take ¢ = Cz(1 — x)
! 1 r(3)ra3) c?
24 :02/ 201 _ )2 = 22V ) 7
/0 v o T 17 r6) 30
Therefore ¢ = \/%:v(l — )
1 1 1
1(¢0) = / ¢ dx = 30/ (1—2z)%dx = 3022 =10
0 0
Compare with 9.87 thus the error is ~ 1.4%
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Formulation of the eigenvalue
problem as an “isoperimetric problem”

The eigenvalues of the system L(y) + A¢-y = 0 with y(a) = y(b) = 0 are the
b
extrema of [ = / (pg”? + r¢?)dx

b
subject to the normalising condition J = / q¢*dr = 1 and

(i) ¢ continuous in [a, b]

(i) ¢(a) = ¢(b) =0
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