UNIVERSITY OF

Southampton

UNIVERSITY OF

Southampton

Data Streams
COMP3211 Advanced Databases

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk
2020-2021

UNIVERSITY OF

Southampton

From Databases to Data Streams

Traditional DBMS makes several assumptions:
 persistent data storage
* relatively static records
* (typically) no predefined notion of time
« complex one-off queries

UNIVERSITY OF

Southampton

From Databases to Data Streams

Some applications have very different requirements:
« data arrives in real-time
« data is ordered (implicitly by arrival time or explicitly by timestamp)
« too much data to store!
« data never stops coming
« ongoing analysis of rapidly changing data

UNIVERSITY OF

Southampton

Big Data - The Four Vs

Volume
« Amount of data

Variety
e Semi-structured, unstructured, schema-free

Veracity
e Untrusted, inaccurate

Velocity
« Speed of operation, rate of analysis

UNIVERSITY OF

Southampton

Big Data - The Four Vs

Volume
« Amount of data

Variety
e Semi-structured, unstructured, schema-free

Veracity
e Untrusted, inaccurate

Velocity
« Speed of operation, rate of analysis

UNIV
Southampton

Example Application: MIDAS

Heathrow+ Ma4,Watford & M1
Stalnes A30 M

UNIVERSITY OF

Southampton

Example Application: MIDAS

J14

J13

J12

J11

J10

J9

Application Domains

« Network monitoring and traffic engineering
« Sensor networks, RFID tags

« Telecommunications call records

« Financial applications

* Web logs and click-streams

- Manufacturing processes

UNIVERSITY OF

Southampton

Data Streams

A (potentially unbounded) sequence of tuples

Transactional data streams: log interactions between entities
« Credit card: purchases by consumers from merchants
« Telecommunications: phone calls by callers to dialed parties
« Web: accesses by clients of resources at servers

Measurement data streams: monitor evolution of entity states
« Sensor networks: physical phenomena, road traffic
« |IP network: traffic at router interfaces
« Earth climate: temperature, moisture at weather stations

UNIVERSITY OF

Southampton

10

One-Time versus Continuous Queries

One-time queries

 Run once to completion over the current data set

Continuous queries

 Issued once and then continuously evaluated over a data stream
« “Notify me when the temperature drops below X”
* “Tell me when prices of stock Y > 300”

UNIVERSITY OF

Southampton

11

Database Management System

query results

l T

query processor

stored data
on disk

UNIVERSITY OF

Southampton

12

UNIVERSITY OF

Southampton

Data Stream Management System (DSMS)

continuous stream of
query results
data | > data
uery processor
streams query p streams

DBMS versus DSMS
DBMS

» Persistent relations
(relatively static, stored)

* One-time queries
« Random access
* “Unbounded” disk store

« Only current state matters

DSMS

* Transient streams
(on-line analysis)

« Continuous queries (CQs)
« Sequential access
« Bounded main memory

« Historical data is important

UNIVERSITY OF

Southampton

14

DBMS versus DSMS
DBMS

* No real-time services

« Relatively low update rate
« Data at any granularity

« Assume precise data

« Access plan determined by query
processor, physical DB design

UNIVERSITY OF

Southampton

DSMS

« Real-time requirements

* Possibly multi-GB arrival rate
« Data at fine granularity

« Data stale/imprecise

« Unpredictable/variable data arrival and
characteristics

15

A Motivation for Stream Processing

Over the past twenty-five years:
« CPU performance has increased by a factor of >1,000,000
« Typical RAM capacity increased by a factor of >1,000,000
« RAM access time has decreased by a factor of >50,000
« Typical HD capacity increased by a factor of >50,000

« HD access time has decreased by a factor of ~10

UNIVERSITY OF

Southampton

16

Architectural Issues

DBMS
« Resource (memory, disk, per-tuple
computation) rich

« Extremely sophisticated query
processing, analysis

« Useful to audit query results of data
stream systems.

* Query Evaluation: Arbitrary

* Query Plan: Fixed.

UNIVERSITY OF

Southampton

DSMS
* Resource (memory, per-tuple
computation) limited

« Reasonably complex, near real time,
query processing

« Useful to identify what data to populate
in database

* Query Evaluation: One pass

* Query Plan: Adaptive

17

UNIVERSITY OF

Southampton

Query Processing

Example: Continuous Query Language

Queries produce/refer to relations and streams

Based on SQL, with the addition of:
« Streams as new data type
« Continuous instead of one-time semantics
« Windows on streams (derived from SQL-99)
« Sampling on streams (basic)

UNIVERSITY OF

Southampton

19

Query Processing

Construct query plan based on relational operators, as in an RDBMS
 Selection
» Projection
* Join
« Aggregation (group by)
Combine plans from continuous queries (reduce redundancy)

Stream tuples through the resulting network of operators

UNIVERSITY OF

Southampton

20

Tuple-at-a-time Operators

Evaluation requires consideration of only one tuple at a time
 Selection and projection

iInput stream output stream

| op >

UNIVERSITY OF

Southampton

21

Full Relation Operators

Some full relation operators can work on a tuple at a time
« Count, sum, average, max, min (even with group by)
« (order by, however, can’t)

Input stream output stream

| op >

accumulator

UNIVERSITY OF

Southampton

22

Full Relation Operators

Other (binary) full relation operators can’t
* Intersection, difference, product, join
* (union, however, can be evaluated tuple-by-tuple)

iInput stream

output stream

op

iInput stream

)

UNIVERSITY OF

Southampton

23

Full Relation Operators

May block when applied to streams
« no output until entire input seen, but streams are unbounded
 joins may need to join tuples that are arbitrarily far apart

iInput stream
output stream

op >

iInput stream

UNIVERSITY OF

Southampton

24

Relation/Stream Translation

Some relational operators can work directly on streams
« Selection, projection, union, some aggregates

Some relational operators need to work on relations
« Join, product, difference, intersection, other aggregates

Stream-to-relation operators
« Windows

Relation-to-stream operators
* [stream, Dstream, Rstream

UNIVERSITY OF

Southampton

25

UNIVERSITY OF

Southampton

Windows

Mechanism for extracting a finite relation (synopsis) from an infinite stream

Various window proposals for restricting operator scope.
« Windows based on ordering attribute (e.g. last 5 minutes of tuples)
« Windows based on tuple counts (e.g. last 1000 tuples)
« Windows based on explicit markers (e.g. punctuations)
« Variants (e.g., partitioning tuples in a window)

Various window behaviours
« Sliding, tumbling

26

Sliding Windows

UNIVERSITY OF

Southampton

data stream

< | | | | | | | | | I
_ — : I I
R | I
| I I | l | |
| | I
1T 1 I I |
windows — 1 ! .
R I R |
B !
| 1 B l | | I
S |
| | | | | | | .
| L I l l | | t'mi
ta ts th t; to t t t3 tg

27

c
58
a4
2%
~C

=

)

o

N

Tumbling Windows

data stream

windows —

time

e

28

UNIVERSITY OF

Southampton

Join Evaluation

Consider a stream-based join operation:
« a conventional join over a pair of windows on the input streams
« outputs a stream of tuples joined from the input streams

[1 [1

input input
stream stream

Vv @ Vv
ﬂ output
stream

UNIVERSITY OF

Southampton

Scalability and Completeness

DBMS deals with finite relations
« query evaluation should produce all results for a given query

DSMS deals with unbounded data streams
« may not be possible to return all results for a given query
 trade-off between resource use and completeness of result set
 size of buffers used for windows is one example of a parameter that affects resource use
and completeness
 can further reduce resource use by randomly sampling from streams

30

Relation-to-Stream Operators

Insert Stream (Istream)
« Whenever a tuple is inserted into the relation, emit it on the stream

Delete Stream (Dstream)
« Whenever a tuple is deleted from the relation, emit it on the stream

Relation Stream (Rstream)
« At every time instant, emit every tuple in relation on the stream

UNIVERSITY OF

Southampton

31

Example CQL Query

SELECT Istream(*)
FROM S [rows unbounded]
WHERE S.A > 10

S is converted into a relation (of unbounded size!)
Resulting relation is converted back to a stream via Istream

UNIVERSITY OF

Southampton

32

UNIVERSITY OF

Southampton

Example CQL Query

SELECT *
FROM S
WHERE S.A > 10

S is a stream - query plan involves only selection, so window is now unnecessary

33

Example CQL Query

SELECT *
FROM S1 [rows 1000],

S2 [range 2 minutes]
WHERE S1.A = S2.A AND S1.A > 10

Windows specified on streams
* Tuple-based sliding window - [rows 1000]
« Time-based sliding window - [range 2 minutes]

UNIVERSITY OF

Southampton

34

UNIVERSITY OF

Southampton

Example CQL Query

SELECT Rstream(S.A, R.B)

FROM S [now], R
WHERE S.A = R.A

Query probes a stored table R based on each tuple in stream S and streams the result
* [now] - time-based sliding window containing tuples received in last time step

35

Query Optimisation
Traditionally relation cardinalities used in query optimiser

« Minimize the size of intermediate results.

Problematic in a streaming environment
 All streams are unbounded = infinite size!

UNIVERSITY OF

Southampton

36

UNIVERSITY OF

Southampton

Query Optimisation

Need novel optimisation objectives that are relevant when input sources are streams

« Stream rate based (e.g. NiagaraCQ)
« Resource-based (e.g. STREAM)
« Quality of service-based (e.g. Aurora)

Continuous adaptive optimisation

37

Notable DSMS Projects

« Aurora, Borealis (Brown/MIT) - sensor monitoring

* Niagara (OGl/Wisconsin) - Internet XML databases

« OpenCQ (Georgia) - triggers, incr. view maintenance
« STREAM (Stanford) - general-purpose DSMS

« Telegraph (Berkeley) - adaptive engine for sensors

UNIVERSITY OF

Southampton

38

Stream Processing Frameworks

Open Source frameworks:

« Apache Flink

« Apache Kafka (developed by LinkedIn)
« Apache Storm (developed by Twitter)
« Apache Apex

Cloud-based frameworks
 AWS Kinesis
« Google Cloud Dataflow

UNIVERSITY OF

Southampton

39

UNIVERSITY OF

Southampton

Further Reading
A. Arasu et al. STREAM: The Stanford Data Stream Management System, Technical
Report, Stanford InfoLab, 2004.

A. Arasu, S. Babu and J. Widom. The CQL continuous query language: semantic
foundations and query execution, The VLDB Journal, 15(2), 121-142, 2006.

M. Cherniack et al, Scalable Distributed Stream Processing, Proceedings of the First
Biennial Conference on Innovative Data Systems Research (CIDR 2003), 2003.

40

UNIVERSITY OF

Southampton

Next Lecture: Peer-to-Peer Systems

