# Southampton



# A Description Logic Primer

COMP6215 Semantic Web Technologies

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk



# Why do we need Description Logics?

RDF Schema isn't sufficient for all tasks

- There are things you can't express
- There are things you can't infer



# **Description Logics**

A family of knowledge representation formalisms

- A subset of first order predicate logic (FOPL)
- Decidable trade-off of expressivity against algorithmic complexity
- Well understood derived from work in the mid-80s to early 90s
- Model-theoretic formal semantics
- Simpler syntax than FOPL

This module assumes that you're familiar with FOPL.

If you need a refresher, the following resources are available:

- Lecture notes for COMP1215 Foundations of Computer Science (on ECS intranet)
- Johnsonbaugh, R. (2014) Discrete Mathematics, 7th ed. Chapter 1. (ebook via library)



# **Description Logics**

Description logics restrict the predicate types that can be used

• Unary predicates denote concept membership

Person(x)

• Binary predicates denote roles between instances

hasChild(x,y)

Note on terminology: the DL literature uses slightly different terms to those in RDFS

- Class and concept are interchangeable terms
- Role, relation and property are interchangeable terms



# Defining ontologies with Description Logics

Describe classes (concepts) in terms of their necessary and sufficient conditions

Consider an attribute A of a class C:

- Attribute A is a necessary condition for membership of C
  - If an object is an instance of C, then it has A
- Attribute A is a sufficient condition for membership of C
  - If an object has A, then it is an instance of C



# Description Logic Reasoning Tasks

#### Satisfaction

"Can this class have any instances?"

#### Subsumption

• "Is every instance of class C necessarily an instance of class D?"

#### Classification

• "What classes is this object an instance of?"



# Concepts as sets



# Syntax



# Expressions

Description logic expressions consist of:

- Concept and role descriptions:
  - Atomic concepts: Person
  - Atomic roles: hasChild
  - Complex concepts: "person with two living parents"
  - Complex roles: "has parent's brother" (i.e. "has uncle")
- Axioms that make statements about how concepts or roles are related to each other:
  - "Every person with two living parents is thankful"
  - "hasUncle is equivalent to has parent's brother"



## **Concept Constructors**

#### Used to construct complex concepts:

| • | Boolean concept constructors    | $\neg C$       | $C \sqcup D$  | $C\sqcap D$ |
|---|---------------------------------|----------------|---------------|-------------|
| • | Restrictions on role successors | $\forall R. C$ | $\exists R.C$ |             |

• Number/cardinality restrictions 
$$\leq n R \geq n R = nR$$

- Nominals (singleton concepts) {*x*}
- Universal concept, top
- Contradiction, bottom



#### **Role Constructors**

#### Used to construct complex roles:

Concrete domains (datatypes)

• Inverse roles  $R^-$ 

• Role composition  $R \circ S$ 

• Transitive roles  $R^+$ 



# OWL and Description Logics

- Not every description logic supports all constructors
- More constructors = more expressive = higher complexity
- For example, OWL DL is equivalent to the logic  $\mathcal{SHOIN}(D)$ 
  - Atomic concepts and roles
  - Boolean operators
  - Universal, existential restrictions, number restrictions
  - Role hierarchies
  - Nominals
  - Inverse and transitive roles (but not role composition)



# Boolean Concept Constructors: Intersection

#### Child □ Happy

The class of things which are both children and happy

Read as "Child AND Happy"





# Boolean Concept Constructors: Union

#### Rich ⊔ Famous

The class of things which are rich or famous (or both)

Read as "Rich OR Famous"





# Boolean Concept Constructors: Complement

### ¬Нарру

The class of things which are not happy

Read as "NOT Happy"





#### Restrictions: Existential

∃hasPet. Cat

The class of things which have some pet that is a cat

must have at least one pet

Read as "hasPet SOME Cat"





#### Restrictions: Existential

∃hasPet. Cat

The class of things which have some pet that is a cat

must have at least one pet

Read as "hasPet SOME Cat"





#### Restrictions: Universal

#### ∀hasPet. Cat

The class of things all of whose pets are cats

- Or, which only have pets that are cats
- includes those things which have no pets

Read as "hasPet ONLY Cat"







#### Restrictions: Universal

#### ∀hasPet. Cat

The class of things all of whose pets are cats

- Or, which only have pets that are cats
- includes those things which have no pets

Read as "hasPet ONLY Cat"





#### Restrictions: Universal

#### ∀hasPet. Cat

The class of things all of whose pets are cats

- Or, which only have pets that are cats
- includes those things which have no pets

Read as "hasPet ONLY Cat"



hasPet



= 1 hasPet

The class of things which have exactly one pet





= 1 hasPet

The class of things which have exactly one pet





≥ 2 hasPet

The class of things which have at least two pets





≥ 2 hasPet

The class of things which have at least two pets





# Knowledge Bases

A description logic knowledge base (KB) has two parts:

- TBox: terminology
  - A set of axioms describing the structure of the domain (i.e., a conceptual schema)
  - Concepts, roles
- ABox: assertions
  - A set of axioms describing a concrete situation (data)
  - Instances



#### **TBox Axioms**

Concept inclusion (C is a subclass of D)

Concept equivalence (C is equivalent to D)

Role inclusion (R is a subproperty of S)

Role equivalence (R is equivalent to S)

Role transitivity (R composed with itself is a subproperty of R)

$$C \sqsubseteq D$$

$$C \equiv D$$

$$R \sqsubseteq S$$

$$R \equiv S$$

$$R^+ \sqsubseteq R$$



# Revisiting Necessary and Sufficient Conditions

"Attribute A is a necessary/sufficient condition for membership of C"

Instead of talking directly about A, we can make a class expression (using the concept constructors) that represents the class of things with attribute A - call it D

• Membership of D is necessary/sufficient for membership of C



# Revisiting Necessary and Sufficient Conditions

Membership of D is a necessary condition for membership of C

$$C \sqsubseteq D$$

Membership of D is a sufficient condition for membership of C

$$C \supseteq D$$

Membership of D is both a necessary and a sufficient condition for membership of C

$$C \equiv D$$



# Revisiting Necessary and Sufficient Conditions

Some common terminology:

$$C \sqsubseteq D$$

• C is a primitive or partial class

$$C \equiv D$$

• C is a defined class

(you'll see these terms used in the Protégé OWL Tutorial)



### **ABox Axioms**

Concept instantiation

• x is of type C

Role instantiation

• x has R of y



# **Axiom Examples**

Every person is either living or dead

Every happy child has a loving parent

Every child who eats only cake is unhealthy

No elephants can fly

A mole is a sauce from Mexico that contains chili

All Englishmen are mad



# **Axiom Examples**

Every person is either living or dead Person ⊑ Living ⊔ Dead

Every happy child has a loving parent Child □ Happy ⊑ ∃hasParent. Loving

Every child who eats only cake is Child  $\sqcap$   $\forall$ eats. Cake  $\sqcap$   $\exists$ eats. Cake  $\sqsubseteq$   $\neg$ Healthy

unhealthy

No elephants can fly Elephant  $\sqcap$  FlyingThing  $\equiv \bot$ 

A mole is a sauce from Mexico that  $Mole \equiv$ 

contains chili Sauce □ ∃hasOrigin. {Mexico} □

∃hasIngredient. Chili

All Englishmen are mad ∃bornIn. {England} □ Male □ Mad



# Tips for Description Logic Axioms

- No single 'correct' answer different modelling choices
- Break sentence down into pieces
  - e.g. "successful man", "spicy ingredient" etc
  - Look for nouns and adjectives (concepts)
  - Look for verb phrases (roles)
- Look for indicators of axiom type:
  - "Every X is Y" inclusion axiom
  - "X is Y" equivalence axiom
- Remember that ∀R.C is satisfied by instances which have no value for R



# Semantics



# Description Logics and Predicate Logic

Description Logics are a subset of first order Predicate Logic with a simplified syntax Every DL expression can be converted into an equivalent FOPL expression



# Description Logics and Predicate logic

Every concept C is translated to a formula  $\phi_C(x)$ 

Every role R is translated to a formula  $\phi_R(x,y)$ 

Boolean concept constructors:

$$\phi_{\neg C}(x) = \neg \phi_C(x)$$

$$\phi_{C \sqcup D}(x) = \phi_C(x) \lor \phi_D(x)$$

$$\phi_{C \sqcap D}(x) = \phi_C(x) \land \phi_D(x)$$

#### Restrictions:

$$\phi_{\exists R.C}(x) = \exists y. \phi_R(x, y) \land \phi_C(y)$$
  
$$\phi_{\forall R.C}(x) = \forall y. \phi_R(x, y) \Rightarrow \phi_C(y)$$



# Description Logics and Predicate logic

Axioms are translated as follows:

Concept inclusion

$$C \sqsubseteq D$$

$$\forall x. \phi_C(x) \Rightarrow \phi_D(x)$$

Concept equivalence  $C \equiv D$ 

$$\forall x. \phi_C(x) \Leftrightarrow \phi_D(x)$$





"Every child who eats cake is happy"



"Every child who eats cake is happy"

$$\forall x \ \phi_{Child \sqcap \exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$



Child 
$$\sqcap$$
 ∃eats. Cake  $\sqsubseteq$  Happy 
$$\forall x \ \phi_{Child \sqcap \exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$











"Every child who eats cake is happy"

$$\forall x \ \phi_{Child \sqcap \exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$

$$\forall x \ \phi_{Child}(x) \land \phi_{\exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$



"Every child who eats cake is happy"

$$\forall x \, \phi_{Child} \exists eats.Cake(x) \Rightarrow \phi_{Happy}(x)$$

$$\forall x \, \phi_{Child}(x) \land \phi_{\exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$



"Every child who eats cake is happy"

$$\forall x \ \phi_{Child} \exists eats.Cake(x) \Rightarrow \phi_{Happy}(x)$$

$$\forall x \ \phi_{Child}(x) \land \phi_{\exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$



"Every child who eats cake is happy"

$$\forall x \ \phi_{Child \sqcap \exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$

$$\forall x \ \phi_{Child}(x) \land \phi_{\exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$

$$\forall x \ \phi_{Child}(x) \land \exists y \ \phi_{eats}(x,y) \land \phi_{Cake}(y) \Rightarrow \phi_{Happy}(x)$$



"Every child who eats cake is happy"

$$\forall x \ \phi_{Child \sqcap \exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$

$$\forall x \ \phi_{Child}(x) \land \phi_{\exists eats.Cake}(x) \Rightarrow \phi_{Happy}(x)$$

$$\forall x \ \phi_{Child}(x) \land \exists y \ \phi_{eats}(x,y) \land \phi_{Cake}(y) \Rightarrow \phi_{Happy}(x)$$



# Description Logic Semantics

 $\Delta$  is the domain (non-empty set of individuals)

Interpretation function  $\cdot^{\mathcal{I}}$  (or ext()) maps:

- Concept expressions to their extensions (set of instances of that concept, subsets of  $\Delta)$
- Roles to subsets of  $\Delta \times \Delta$
- Individuals to elements of  $\Delta$

### Examples:

- $C^{\mathcal{I}}$  is the set of members of C
- ullet  $(C \sqcup D)^{\mathcal{I}}$  is the set of members of either C or D



# Description Logic Semantics

| Syntax                         | Semantics                                                                                      | Notes             |
|--------------------------------|------------------------------------------------------------------------------------------------|-------------------|
| $(C\sqcap D)^{\mathcal{I}}$    | $C^{\mathcal{I}} \cap D^{\mathcal{I}}$                                                         | Conjunction       |
| $(C \sqcup D)^{\mathcal{I}}$   | $C^{\mathcal{I}} \cup D^{\mathcal{I}}$                                                         | Disjunction       |
| $(\neg C)^{\mathcal{I}}$       | $\Delta \setminus C^{\mathcal{I}}$                                                             | Complement        |
| $(\exists R. C)^{\mathcal{I}}$ | $\{x   \exists y . \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$     | Existential       |
| $(\forall R.C)^{\mathcal{I}}$  | $\{x   \forall y \langle x, y \rangle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$ | Universal         |
| $(\geq n R)^{\mathcal{I}}$     | $\left\{ x \middle  \#\{y \middle  \langle x, y \rangle \in R^{\mathcal{I}}\} \ge n \right\}$  | Min cardinality   |
| $(\leq n R)^{\mathcal{I}}$     | $\{x   \#\{y   \langle x, y \rangle \in R^{\mathcal{I}}\} \le n\}$                             | Max cardinality   |
| $(=nR)^{\mathcal{I}}$          | $\{x   \#\{y   \langle x, y \rangle \in R^{\mathcal{I}}\} = n\}$                               | Exact cardinality |
| $(\perp)^{\mathcal{I}}$        | Ø                                                                                              | Bottom            |
| $(T)^{\mathcal{I}}$            | Δ                                                                                              | Тор               |



## Interpretation Example

$$\Delta = \{v, w, x, y, z\}$$

$$A^{\mathcal{I}} = \{v, w, x\}$$

$$B^{\mathcal{I}} = \{x, y\}$$

$$R^{\mathcal{I}} = \{\langle v, w \rangle, \langle v, x \rangle, \langle y, x \rangle, \langle x, z \rangle\}$$





## Interpretation Example

$$(\neg B)^{\mathcal{I}} = (A \sqcup B)^{\mathcal{I}} = (A \sqcup B)^{\mathcal{I}} = (\neg A \sqcap B)^{\mathcal{I}} = (\exists R.B)^{\mathcal{I}} = (\forall R.B)^{\mathcal{I}} = (\exists R.(\exists R.A))^{\mathcal{I}} = (\exists R.\neg(A\sqcap B))^{\mathcal{I}} = (R^+)^{\mathcal{I}} = (R^+)^$$





### **Answers**

$$(\neg B)^{\mathcal{I}} = \{v, w, z\}$$

$$(A \sqcup B)^{\mathcal{I}} = \{v, w, x, y\}$$

$$(\neg A \sqcap B)^{\mathcal{I}} = \{y\}$$

$$(\exists R. B)^{\mathcal{I}} = \{v, y\}$$

$$(\forall R. B)^{\mathcal{I}} = \{y, w, z\}$$

$$(\exists R. (\exists R. A))^{\mathcal{I}} = \{\}$$

$$(\exists R. \neg (A \sqcap B))^{\mathcal{I}} = \{v, x\}$$

$$(\exists R^{-}. A)^{\mathcal{I}} = \{w, x, z\}$$

$$(R^{+})^{\mathcal{I}} = \{\langle v, w \rangle, \langle v, x \rangle, \langle v, z \rangle, \langle y, x \rangle, \langle y, z \rangle, \langle x, z \rangle\}$$



DL Reasoning Revisited



# DL Reasoning Revisited

A description logic knowledge base comprises:

- A TBox defining concepts and roles
- An ABox containing assertations about instances

$$K = \langle TBox, ABox \rangle$$

We can construct an interpretation  $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$  which maps the instances, concepts and roles in K onto a domain  $\Delta$  via an interpretation function  $\cdot^{\mathcal{I}}$ 

We can redefine the reasoning tasks in terms of  $\mathcal{I}$ 



## Satisfaction

"Can this class have any instances?"

A class C is satisfiable with respect to a KB K iff there exists an interpretation  $\mathcal{I}$  of K with  $C^{\mathcal{I}} \neq \emptyset$ 



# Subsumption

"Is every instance of this class necessarily an instance of this other class?"

A class C is subsumed by a class D with respect to a KB K iff for every interpretation  $\mathcal{I}$  of K,  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ 



# Equivalence

"Is every instance of this class necessarily an instance of this other class, and vice versa?"

A class C is equivalent to a class D with respect to a KB K iff for every interpretation  $\mathcal{I}$  of K,  $C^{\mathcal{I}} = D^{\mathcal{I}}$ 



## Classification

"Is this individual necessarily an instance of this class?"

An individual x is an instance of class C wrt a KB K iff for every interpretation  $\mathcal{I}$  of K,  $x^{\mathcal{I}} \in C^{\mathcal{I}}$ 



### Reduction to Satisfaction

Tableau-based reasoners for description logics (the predominant modern approach) reduce all reasoning tasks to satisfaction:

### Subsumption

• C is subsumed by  $D \Leftrightarrow (C \sqcap \neg D)$  is unsatisfiable

### Equivalence

• C is equivalent to  $D \Leftrightarrow both (C \sqcap \neg D) and (\neg C \sqcap D)$  are unsatisfiable

#### Classification

• x is an instance of  $C \Leftrightarrow (\neg C \sqcap \{x\})$  is unsatisfiable



# Further Reading

Daniele Nardi and Ronald J. Brachman (2003) An Introduction to Description Logics, in Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. Patel-Schneider (eds) The Description Logic Handbook: Theory, implementation and applications, Cambridge University Press, 2003, pp.1-40.

F. Baader and W. Nutt (2003) Basic Description Logics, in Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. Patel-Schneider (eds) The Description Logic Handbook: Theory, implementation and applications, Cambridge University Press, 2003, pp.47-100.

Southampton

Next Lecture: OWL