Networks and Vata

Ruben Sanchez-Garcia Mathematical Sciences

WebScience MSc Guest Lecture 18 November 2015

Topology

- * Mathematical study of 'shapes'
- * Similar to Geometry, but objects can be continuously deformed

http://www.renyi.mta.hu/~szilard/topology/CUBE=SPHERE.jpeg

http://atomsandvoid.files.wordpress.com/2011/02/topology1.png?w=570

Seven bridges of Könisberg

Image by Bogdan Giuscă (Wikipedia)

Euler (1735)

Viscrete structures in Topology

* Complexes: Discrete representations of continuous shapes

gaeh (Wikipedia) Image: Mathematica

* Example: Networks

biological

socio-technological

abstract complex

technological

Symmetric spectrum

· We studied how symmetries (automorphisms) affect network spectrum

• Symmetries give rise to high-multiplicity eigenvalues (peaks in spectral

density)

- The network spectrum is the union of the redundant spectrum of the symmetric motifs, and the spectrum of the quotient network
- The redundant spectrum of the *basic* symmetric motifs is very constrained e.g. $\mathrm{RSpec}_1=\{-1,0\}$ $\mathrm{RSpec}_2=\{-2,-\varphi,-1,0,\varphi-1,1\}$

RSpec₃ = {
$$-3, -2, -1, 0, 1, \pm \sqrt{2}, \pm \sqrt{3}, -1 \pm \sqrt{2}, -1 \pm \sqrt{3}, \ldots$$
}

MacArthur, Sanchez-Garcia, Anderson Symmetry in Complex Networks **Discrete Appl. Math.** (2008) MacArthur, Sanchez-Garcia Spectral characteristics of network redundancy **Phys. Rev. E** (2009)

From Pata to Complexes

- * PATA = entities x_i with pairwise distances or similarities s_{ij}
- * Example: point clouds in high-dimensional space

Topological Features

* Example: Euler characteristics of a complex

χ = #nodes - #links + #faces

$$\chi() = 0$$

Etc.

Topology as a visualisation tool

* Visualisation: Exploratory data analysis

AYASDI

Topological Ranking

- * Project with current WebScience MSc/PhD student Conrad D'Souza
- * Ranking is a key activity that permeates the Web
- * Challenges: sparse data, transitivity, etc.
- * Topological rank: global ranking & explains residual error
- * Case study: horse racing data

Want to know more?

[1] G. Carlsson, Topology and data, Bulletin of the American Mathematical Society, 2009.

[21 JavaPlex: Persistent homology and topological data analysis library http://javaplex.github.io/javaplex/

[3] Mapper in Python (Daniel Müllner) http://danifold.net/mapper/index.html

[4] Ayasdi http://www.ayasdi.com/

[51] I. J. Good, The Philosophy of Exploratory Pata Analysis, Philosophy of Science, 1983.

C61 M. Nicolau, A. J. Levine, and G. Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, PNAS, 2011.

[7] J. M. Chan, G. Carlsson, and R. Rabadan, Topology of viral evolution, PNAS, 2013.

[81 Sayan Mukherjee: https://stat.duke.edu/~sayan/Publications.html

or talk to me

R.Sanchez-Garcia@soton.ac.uk
Office 8023 in Building 54

Thank you