
PDF Specifications

Portable Document Format, PDF, is a file format similar to Postscript. It enables users to
exchange and view electronic documents independent of the platform on which they were created.
This allows any user with Adobe Acrobat Reader to view a PDF document.

The PDF implementation of an Employee Directory was created using basic structures of the
PDF format. The following is an overview of the structures used to create the document.

Basic Document Structure

The PDF document is defined in segments called objects. Each object has a number assigned
to it so that it can be referred to by other objects. The objects do not have to appear in chronological
order in the document, but is much easier to follow when they are.

The first part of a PDF document is the Catalog. The Catalog is the root object and contains
references to the pages and outline contained in the document. The reference is a pointer to another
object that defines the pages and outlines. Each page can be represented by with it’s own object. The
Catalog references an object that contains the number of pages and the object number of each page.
The reference to the outline contains the number of outlines and their object numbers. If no outline
is used, the number of outlines is set to zero.

The Page object defines how the page will appear. The fonts that will be used, which are
defined in their own object, are referenced, as well as the parent object, the ProcSet, MediaBox, and
the object that contains the actual information. These are explained in more detail later. The
information that the page contains is defined in a stream. The length of this stream in characters must
be know, and is referenced in another object. If the length of the stream is known before the PDF
document is written, the length of the stream can be written into the document without the need of
another object.

After all of the objects have been written, the xref is made. This is a listing of the objects and
position that the object starts in the file in bytes. It is possible for PDF readers to jump to a particular
page in a document. The xref tells the reader where in the file to go to for the page without having
to read through or download the whole document. After the xref is the trailer. This tells the reader
the number of objects (including one free object) are in the document and the object number of the
root object. Finally, the total length of the file up to the xref is written, followed by an end of file
marker.

Syntax

The first line of the PDF document is the version of the PDF format being used. For simple
documents only containing text, version 1.0 can be used.

The first line of an object starts with the object number, followed by the generation number,
and finally the keyword obj. The generation number is generally set to zero, and obj lets the reader
know that the following information is an object. The content of the object is contained within
opening << and closing >>. The object is closed by the endobj keyword.

The first object is the Catalog. The object is defined as a Catalog using the Type keyword.
The Pages keyword is used to reference the object that contains information about the page objects.
If an outline is used, the Outlines keyword references the object that contains the outline objects. The
following is part of a PDF file showing the version and Catalog object.

%PDF-1.0
1 0 obj
<<
/Type /Catalog
/Pages 3 0 R
/Outlines 2 0 R
>>
endobj
2 0 obj
<<
/Type /Outlines
/Count 0
>>
endobj
3 0 obj
<<
/Type /Pages
/Count 1
/Kids [4 0 R]
>>
endobj

The page information is contained in object three and the outline information is contained in
object two. Object two is of type outline and /Count 0, shows that it has no information defined for
the outline. Object three is of type pages, so it defines the page objects for the document. The
number of pages is defined using the count keyword. /Kids references the objects that contain the
page format information. If there were two pages, /Kids [4 0 R 25 0 R] would be used where object
25 is an object containing the page format information.

4 0 obj
<<
/Type /Page
/Parent 3 0 R
/Resources << /Font << /F1 7 0 R >> /ProcSet 6 0 R >>
/MediaBox [0 0 612 792]
/Contents 5 0 R
>>
endobj

Object four is of type page and defines the page format. It references it’s parent object, which
is the object that calls it, and the object that contains the page information. The /Resources tells the

main format of the page to be used. The objects that define the fonts and ProcSets are defined inside
the opening << and closing >>. The MediaBox defines the size of the page in points in a rectangular
coordinate system. The lower left corner is (0,0) and in this example the upper right corner is
(612,792). One inch is equal to 72 points. Positioning of characters on the page is done using this
coordinate system. /Contents references the object, 5, that contains the page information.

5 0 obj
<< /Length 44 >>
stream
BT
/F1 24 Tf
100 100 Td (Hello World) Tj
ET
endstream
endobj

Object five is the main object that defines what appears on the page. Since the information
is contained in the stream, the length of the stream has to be known. In this example, the length if
the stream is known to be 44 bytes. This can be verified by counting the characters, including an end
of line character, starting with the BT and ending with the ET. In general, if the length of the stream
is not know, an object that appears after the page object must be referenced that contains the length
of the stream. This is accomplished by changing << /Length 44>> to /Length X 0 R, where X is the
number of the object that contains the length of the stream. This object is very simple:

X 0 obj
44
endobj

After the length declaration, the information stream begins. The keywords steam and BT start the
stream. Likewise, ET and endstream end it. Before text can be written, it has to have a font
referenced. The name of the font and the point size for the text is declared, followed by the keyword
Tf. Tf sets the font name and size.

This way of defining a page makes it necessary to have three objects per page. These objects
are of types Pages, Page, and the length object.

The next line contains the text and it’s placement on the page. If this is the first text to be
written to the page, the current x and y position of the page are both zero. After text has been
written, the current x and y positions take on the value that x and y were increased or decreased by.
The Td keyword is used to move x and y positions. The difference in the x position, the difference
in the y position, preceeds Td to move the text position. So to move to (50,50), before any other text
has been placed, “50 50 Td” would be used. Now to move to (100, 25), “50 -25 Td” is used. The
length of the text does not change the x and y positions.

The text to be written to the page follows the Td and is contained within parenthesis. The
Tj keyword tells the reader to show the text. If the text has hanging parenthesis, this will cause the
page containing the hanging paren to not load.

6 0 obj
[/PDF /Text]
endobj
7 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Helvetica
>>
endobj

Object six defines the ProcSet to be used. For a simple document that only contains text,
/PDF and /Text are the only ProcSet’s needed. There are other ProcSet’s that need to be used of
images are to be included.

Object seven is of type font which defines the font to be used. The Sybtype keyword defines
the type of font to be used. Type1 fonts are special-purpose PostScript language programs used for
defining fonts. The name of the font, as it is to be used in the PDF document, is defined using the
name keyword. The name of the font has the format /FX, where X is an integer. Multiple fonts can
be defined in this way. There are 14 Type1 fonts that are guaranteed to be present in the reader.
These fonts do not need any attributes defined for them. The BaseFont can be one of these 14 fonts
or a special font can be defined.

xref
0 8
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000322 00000 n
0000000415 00000 n
0000000445 00000 n

After all of the objects have been written, the xref is made. Each object in a PDF file is
referenced in the xref table at the end of the file. This table begins with the xref keyword. The next
line begins with a number representing the subsection of the xref table. For simple PDF files, this
number is usually 0. The following number is the number of objects used in the file, plus one for the
next free object to be used. This free object is defined on the following line. The remaining lines are
objects that are in use. The first set of numbers is the number of bytes into the file where the object
starts. The second set of numbers is the generation number of the object. This number is originally
set to 00000, (unless it is a free object, where it is set to 65535). Each time that the object is updated
or changed, the generation number is increased by 1, until the maximum number, 65535, is reached.
The generation number is followed by either an f, for free object, or an n, for a used object. There are
seven objects in use, plus the one free object for a total of 8, as seen on the second line. The first
object in use, begins at 9 bytes into the file. It has not been updated or changed because the

generation number is still 00000. The last object begins 445 bytes into the file, and also has not been
modified.

trailer
<<
/Size 8
/Root 1 0 R
>>
startxref
553
%%EOF

After the xref is the trailer. This reports the total number of objects, including the free object.
It also tells the root document, which is the Catalog, object number one. The trailer is contained in
opening << and closing >>. When the reader opens the the PDF document, it starts at the end of the
file and reads the trailer and the xref first. This is why startxref comes after the xref has been defined.
Reading the end of the file first allows the reader to know how far into the document each object
starts so that individual pages can be accessed without having to read or download the entire
document. After startxref, the number of bytes into the file where the keyword xref begins, is
reported. Finally, %%EOF marks the end of the document.

The 14 Type1 BaseFonts Guaranteed to be in Adobe Acrobat Reader

Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique
Symbol
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
ZapfDingbats

PDF 1.2 Reference Manual November 27, 1996 :

333

APPENDIX B

Summary of Page Marking
Operators

Following is a list of all page marking operators used in PDF files, arranged
alphabetically. For each operator, a brief description is given, along with a
reference to the page in this document where the operator is discussed in detail.
Words shown in boldface in the summary column are PostScript language
operators.

Table B.1 PDF page marking operators

Operator Summary Page

b closepath, fill, and stroke path 227

B fill and stroke path 227

b* closepath, eofill, and stroke path 227

B* eofill and stroke path 227

BDC begin marked content, with a dictionary 240

BI begin image 238

BMC begin marked content 240

BT begin text object 233

BX begin section allowing undefined operators 239

c curveto 223

cm concat. Concatenates the matrix to the current transformation
matrix.

213

cs setcolorspace for fill 220

CS setcolorspace for stroke 221

d setdash 215

d0 setcharwidth for Type 3 font 239

d1 setcachedevice for Type 3 font 239

Do execute the named XObject 236

PDF 1.2

PDF 1.2

PDF 1.1

PDF 1.1

PDF 1.1

: November 27, 1996

334 Adobe Systems Inc.

DP mark a place in the content stream, with a dictionary 241

EI end image 238

EMC end marked content 240

ET end text object 233

EX end section that allows undefined operators 239

f fill path 226

F fill path 226

f* eofill path 226

g setgray (fill) 219

G setgray (stroke) 220

gs set parameters in the extended graphics state 217

h closepath 225

i setflat 213

ID begin image data 238

j setlinejoin 216

J setlinecap 214

k setcmykcolor (fill) 220

K setcmykcolor (stroke) 220

l lineto 223

m moveto 223

M setmiterlimit 217

MP mark a place in the content stream 241

n end path without fill or stroke 226

q save graphics state 213

Q restore graphics state 213

re rectangle 224

rg setrgbcolor (fill) 220

RG setrgbcolor (stroke) 220

Table B.1 PDF page marking operators

Operator Summary Page

PDF 1.2

PDF 1.2

PDF 1.1

PDF 1.2

PDF 1.2

November 27, 1996

: 335

s closepath and stroke path 226

S stroke path 226

sc setcolor (fill) 221

SC setcolor (stroke) 221

scn setcolor (fill, in pattern and separation color spaces) 221

SCN setcolor (stroke, in pattern and separation color spaces) 221

Tc set character spacing 229

Td move text current point 233

TD move text current point and set leading 233

Tf set font name and size 230

Tj show text 234

TJ show text, allowing individual character positioning 235

TL set leading 230

Tm set text matrix 233

Tr set text rendering mode 232

Ts set super/subscripting text rise 232

Tw set word spacing 229

Tz set horizontal scaling 230

T* move to start of next line 233

v curveto 223

w setlinewidth 216

W clip 227

W* eoclip 227

y curveto 224

' move to next line and show text 234

" move to next line and show text 235

Table B.1 PDF page marking operators

Operator Summary Page

PDF 1.1

PDF 1.1

PDF 1.2

PDF 1.2

