
Caching Tutorial for Web Authors and Webmasters

This is an informational document. Although technical in nature, it attempts to

make the concepts involved understandable and applicable in real-world situa-

tions. Because of this, some aspects of the material are simplified or omitted, for

the sake of clarity. If you are interested in the minutia of the subject, please ex-

plore the References and Further Information at the end.

1. What’s a Web Cache? Why do people use them?

2. Kinds of Web Caches

1. Browser Caches

2. Proxy Caches

3. Aren’t Web Caches bad for me? Why should I help them?

4. How Web Caches Work

5. How (and how not) to Control Caches

1. HTML Meta Tags vs. HTTP Headers

2. Pragma HTTP Headers (and why they don’t work)

3. Controlling Freshness with the Expires HTTP Header

4. Cache-Control HTTP Headers

5. Validators and Validation

6. Tips for Building a Cache-Aware Site

7. Writing Cache-Aware Scripts

8. Frequently Asked Questions

9. Implementation Notes — Web Servers

10. Implementation Notes — Server-Side Scripting

11. References and Further Information

12. About This Document

What’s a Web Cache? Why do people use them?
A Web cache sits between one or more Web servers (also known as origin servers) and a

client or many clients, and watches requests come by, saving copies of the responses —

like HTML pages, images and files (collectively known as representations) — for itself.

Then, if there is another request for the same URL, it can use the response that it has,

https://www.mnot.net/cache_docs/#REF
https://www.mnot.net/cache_docs/#DEFINITION
https://www.mnot.net/cache_docs/#KINDS
https://www.mnot.net/cache_docs/#BROWSER
https://www.mnot.net/cache_docs/#PROXY
https://www.mnot.net/cache_docs/#WHY
https://www.mnot.net/cache_docs/#WORK
https://www.mnot.net/cache_docs/#CONTROL
https://www.mnot.net/cache_docs/#META
https://www.mnot.net/cache_docs/#PRAGMA
https://www.mnot.net/cache_docs/#EXPIRES
https://www.mnot.net/cache_docs/#CACHE-CONTROL
https://www.mnot.net/cache_docs/#VALIDATE
https://www.mnot.net/cache_docs/#TIPS
https://www.mnot.net/cache_docs/#SCRIPT
https://www.mnot.net/cache_docs/#FAQ
https://www.mnot.net/cache_docs/#IMP-SERVER
https://www.mnot.net/cache_docs/#IMP-SCRIPT
https://www.mnot.net/cache_docs/#REF
https://www.mnot.net/cache_docs/#ABOUT

instead of asking the origin server for it again.

There are two main reasons that Web caches are used:

To reduce latencyreduce latency — Because the request is satisfied from the cache (which is closer

to the client) instead of the origin server, it takes less time for it to get the representa-

tion and display it. This makes the Web seem more responsive.

To reduce network trafficreduce network traffic — Because representations are reused, it reduces the

amount of bandwidth used by a client. This saves money if the client is paying for

traffic, and keeps their bandwidth requirements lower and more manageable.

Kinds of Web Caches
Browser Caches
If you examine the preferences dialog of any modern Web browser (like Internet Ex-

plorer, Safari or Mozilla), you’ll probably notice a “cache” setting. This lets you set aside

a section of your computer’s hard disk to store representations that you’ve seen, just for

you. The browser cache works according to fairly simple rules. It will check to make

sure that the representations are fresh, usually once a session (that is, the once in the

current invocation of the browser).

This cache is especially useful when users hit the “back” button or click a link to see a

page they’ve just looked at. Also, if you use the same navigation images throughout

your site, they’ll be served from browsers’ caches almost instantaneously.

Proxy Caches
Web proxy caches work on the same principle, but a much larger scale. Proxies serve

hundreds or thousands of users in the same way; large corporations and ISPs often set

them up on their firewalls, or as standalone devices (also known as intermediaries).

Because proxy caches aren’t part of the client or the origin server, but instead are out

on the network, requests have to be routed to them somehow. One way to do this is to

use your browser’s proxy setting to manually tell it what proxy to use; another is using

interception. Interception proxies have Web requests redirected to them by the under-

lying network itself, so that clients don’t need to be configured for them, or even know

about them.

Proxy caches are a type of shared cache; rather than just having one person using them,

they usually have a large number of users, and because of this they are very good at re-

ducing latency and network traffic. That’s because popular representations are reused

a number of times.

Gateway Caches
Also known as “reverse proxy caches” or “surrogate caches,” gateway caches are also in-

termediaries, but instead of being deployed by network administrators to save band-

width, they’re typically deployed by Webmasters themselves, to make their sites more

scalable, reliable and better performing.

Requests can be routed to gateway caches by a number of methods, but typically some

form of load balancer is used to make one or more of them look like the origin server to

clients.

Content delivery networks (CDNs) distribute gateway caches throughout the Internet

(or a part of it) and sell caching to interested Web sites. Speedera and Akamai are exam-

ples of CDNs.

This tutorial focuses mostly on browser and proxy caches, although some of the infor-

mation is suitable for those interested in gateway caches as well.

Aren’t Web Caches bad for me? Why should I help
them?
Web caching is one of the most misunderstood technologies on the Internet. Webmas-

ters in particular fear losing control of their site, because a proxy cache can “hide” their

users from them, making it difficult to see who’s using the site.

Unfortunately for them, even if Web caches didn’t exist, there are too many variables

on the Internet to assure that they’ll be able to get an accurate picture of how users see

their site. If this is a big concern for you, this tutorial will teach you how to get the sta-

tistics you need without making your site cache-unfriendly.

Another concern is that caches can serve content that is out of date, or stale. However,

this tutorial can show you how to configure your server to control how your content is

cached.

On the other hand, if you plan your site well, caches can help your Web site load faster,

and save load on your server and Internet link. The difference can be dramatic; a site

that is difficult to cache may take several seconds to load, while one that takes advan-

tage of caching can seem instantaneous in comparison. Users will appreciate a fast-

loading site, and will visit more often.

Think of it this way; many large Internet companies are spending millions of dollars

setting up farms of servers around the world to replicate their content, in order to

http://www.speedera.com/
http://www.akamai.com/

CDNsCDNs are an inter- are an inter-

esting develop-esting develop-

ment, because un-ment, because un-

like many like many proxyproxy

caches, their gate-caches, their gate-

way caches areway caches are

aligned with thealigned with the

interests of theinterests of the

Web site beingWeb site being

cached, so thatcached, so that

these problemsthese problems

aren’t seen. How-aren’t seen. How-

ever, even whenever, even when

you use a CDN,you use a CDN,

you still have toyou still have to

consider thatconsider that

there will be proxythere will be proxy

and browserand browser

caches down-caches down-

stream.stream.

make it as fast to access as possible for their users.

Caches do the same for you, and they’re even closer

to the end user. Best of all, you don’t have to pay for

them.

The fact is that proxy and browser caches will be

used whether you like it or not. If you don’t config-

ure your site to be cached correctly, it will be cached

using whatever defaults the cache’s administrator

decides upon.

How Web Caches Work
All caches have a set of rules that they use to deter-

mine when to serve a representation from the

cache, if it’s available. Some of these rules are set in

the protocols (HTTP 1.0 and 1.1), and some are set by

the administrator of the cache (either the user of

the browser cache, or the proxy administrator).

Generally speaking, these are the most common

rules that are followed (don’t worry if you don’t un-

derstand the details, it will be explained below):

1. If the response’s headers tell the cache not to

keep it, it won’t.

2. If the request is authenticated or secure (i.e., HTTPS), it won’t be cached.

3. A cached representation is considered fresh (that is, able to be sent to a client with-

out checking with the origin server) if:

It has an expiry time or other age-controlling header set, and is still within the

fresh period, or

If the cache has seen the representation recently, and it was modified relatively

long ago.

Fresh representations are served directly from the cache, without checking with

the origin server.

4. If a representation is stale, the origin server will be asked to validate it, or tell the

cache whether the copy that it has is still good.

5. Under certain circumstances — for example, when it’s disconnected from a net-

work — a cache can serve stale responses without checking with the origin server.

If your site is host-If your site is host-

ed at an ISP ored at an ISP or

hosting farm andhosting farm and

they don’t give youthey don’t give you

the ability to setthe ability to set

arbitrary HTTParbitrary HTTP

headers (like headers (like Ex-Ex-

pirespires and and Cache-Cache-

ControlControl), com-), com-

plain loudly; theseplain loudly; these

are tools necessaryare tools necessary

for doing your job.for doing your job.

If no validator (an ETag or Last-Modified header) is present on a response, and it

doesn't have any explicit freshness information, it will usually — but not always — be

considered uncacheable.

Together, freshness and validation are the most important ways that a cache works with

content. A fresh representation will be available instantly from the cache, while a vali-

dated representation will avoid sending the entire representation over again if it hasn’t

changed.

How (and how not) to Control Caches
There are several tools that Web designers and Webmasters can use to fine-tune how

caches will treat their sites. It may require getting your hands a little dirty with your

server’s configuration, but the results are worth it. For details on how to use these tools

with your server, see the Implementation sections below.

HTML Meta Tags and HTTP Headers
HTML authors can put tags in a document’s <HEAD> section that describe its attributes.

These meta tags are often used in the belief that they can mark a document as un-

cacheable, or expire it at a certain time.

Meta tags are easy to use, but aren’t very effective. That’s because they’re only honored

by a few browser caches, not proxy caches (which almost never read the HTML in the

document). While it may be tempting to put a Pragma: no-cache meta tag into a Web

page, it won’t necessarily cause it to be kept fresh.

On the other hand, true HTTP headers give you a lot

of control over how both browser caches and prox-

ies handle your representations. They can’t be seen

in the HTML, and are usually automatically generat-

ed by the Web server. However, you can control

them to some degree, depending on the server you

use. In the following sections, you’ll see what HTTP

headers are interesting, and how to apply them to

your site.

HTTP headers are sent by the server before the

HTML, and only seen by the browser and any inter-

mediate caches. Typical HTTP 1.1 response headers

might look like this:

https://www.mnot.net/cache_docs/#IMP-SERVER

HTTP/1.1 200 OK
Date: Fri, 30 Oct 1998 13:19:41 GMT
Server: Apache/1.3.3 (Unix)
Cache-Control: max-age=3600, must-revalidate
Expires: Fri, 30 Oct 1998 14:19:41 GMT
Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT
ETag: "3e86-410-3596fbbc"
Content-Length: 1040
Content-Type: text/html

The HTML would follow these headers, separated by a blank line. See the Implementa-

tion sections for information about how to set HTTP headers.

Pragma HTTP Headers (and why they don’t work)
Many people believe that assigning a Pragma: no-cache HTTP header to a representa-

tion will make it uncacheable. This is not necessarily true; the HTTP specification does

not set any guidelines for Pragma response headers; instead, Pragma request headers

(the headers that a browser sends to a server) are discussed. Although a few caches may

honor this header, the majority won’t, and it won’t have any effect. Use the headers be-

low instead.

Controlling Freshness with the Expires HTTP Header
The Expires HTTP header is a basic means of controlling caches; it tells all caches how

long the associated representation is fresh for. After that time, caches will always check

back with the origin server to see if a document is changed. Expires headers are sup-

ported by practically every cache.

Most Web servers allow you to set Expires response headers in a number of ways. Com-

monly, they will allow setting an absolute time to expire, a time based on the last time

that the client retrieved the representation (last access time), or a time based on the last

time the document changed on your server (last modification time).

Expires headers are especially good for making static images (like navigation bars and

buttons) cacheable. Because they don’t change much, you can set extremely long expiry

time on them, making your site appear much more responsive to your users. They’re

also useful for controlling caching of a page that is regularly changed. For instance, if

you update a news page once a day at 6am, you can set the representation to expire at

that time, so caches will know when to get a fresh copy, without users having to hit ‘re-

load’.

The onlyonly value valid in an Expires header is a HTTP date; anything else will most likely

be interpreted as ‘in the past’, so that the representation is uncacheable. Also, remem-

ber that the time in a HTTP date is Greenwich Mean Time (GMT), not local time.

https://www.mnot.net/cache_docs/#IMP-SERVER

It’s important toIt’s important to

make sure thatmake sure that

your Web server’syour Web server’s

clock is accurate ifclock is accurate if

you use the you use the Ex-Ex-

pirespires header. header. OneOne

way to do this isway to do this is

using the using the NetworkNetwork

Time ProtocolTime Protocol

(NTP); talk to your(NTP); talk to your

local system ad-local system ad-

ministrator to findministrator to find

out more.out more.

For example:

Although the Expires header is useful, it has some

limitations. First, because there’s a date involved,

the clocks on the Web server and the cache must be

synchronised; if they have a different idea of the

time, the intended results won’t be achieved, and

caches might wrongly consider stale content as

fresh.

Another problem with Expires is that it’s easy to

forget that you’ve set some content to expire at a

particular time. If you don’t update an Expires time

before it passes, each and every request will go back

to your Web server, increasing load and latency.

Cache-Control HTTP Headers
HTTP 1.1 introduced a new class of headers, Cache-

Control response headers, to give Web publishers

more control over their content, and to address the limitations of Expires.

Useful Cache-Control response headers include:

max-age=max-age=[seconds] — specifies the maximum amount of time that a representation

will be considered fresh. Similar to Expires, this directive is relative to the time of

the request, rather than absolute. [seconds] is the number of seconds from the time

of the request you wish the representation to be fresh for.

s-maxage=s-maxage=[seconds] — similar to max-age, except that it only applies to shared (e.g.,

proxy) caches.

publicpublic — marks authenticated responses as cacheable; normally, if HTTP authenti-

cation is required, responses are automatically private.

privateprivate — allows caches that are specific to one user (e.g., in a browser) to store the

response; shared caches (e.g., in a proxy) may not.

no-cacheno-cache — forces caches to submit the request to the origin server for validation

before releasing a cached copy, every time. This is useful to assure that authentica-

tion is respected (in combination with public), or to maintain rigid freshness, with-

out sacrificing all of the benefits of caching.

no-storeno-store — instructs caches not to keep a copy of the representation under any con-

Expires: Fri, 30 Oct 1998 14:19:41 GMT

http://www.ntp.org/

ditions.

must-revalidatemust-revalidate — tells caches that they must obey any freshness information you

give them about a representation. HTTP allows caches to serve stale representations

under special conditions; by specifying this header, you’re telling the cache that you

want it to strictly follow your rules.

proxy-revalidateproxy-revalidate — similar to must-revalidate, except that it only applies to

proxy caches.

For example:

When both Cache-Control and Expires are present, Cache-Control takes precedence. If

you plan to use the Cache-Control headers, you should have a look at the excellent doc-

umentation in HTTP 1.1; see References and Further Information.

Validators and Validation
In How Web Caches Work, we said that validation is used by servers and caches to com-

municate when a representation has changed. By using it, caches avoid having to

download the entire representation when they already have a copy locally, but they’re

not sure if it’s still fresh.

Validators are very important; if one isn’t present, and there isn’t any freshness infor-

mation (Expires or Cache-Control) available, caches will not store a representation at

all.

The most common validator is the time that the document last changed, as communi-

cated in Last-Modified header. When a cache has a representation stored that includes

a Last-Modified header, it can use it to ask the server if the representation has changed

since the last time it was seen, with an If-Modified-Since request.

HTTP 1.1 introduced a new kind of validator called the ETag. ETags are unique identi-

fiers that are generated by the server and changed every time the representation does.

Because the server controls how the ETag is generated, caches can be sure that if the

ETag matches when they make a If-None-Match request, the representation really is the

same.

Almost all caches use Last-Modified times as validators; ETag validation is also becom-

ing prevalent.

Most modern Web servers will generate both ETag and Last-Modified headers to use as

Cache-Control: max-age=3600, must-revalidate

https://www.mnot.net/cache_docs/#REF
https://www.mnot.net/cache_docs/#WORK

validators for static content (i.e., files) automatically; you won’t have to do anything.

However, they don’t know enough about dynamic content (like CGI, ASP or database

sites) to generate them; see Writing Cache-Aware Scripts.

Tips for Building a Cache-Aware Site
Besides using freshness information and validation, there are a number of other things

you can do to make your site more cache-friendly.

Use URLs consistentlyUse URLs consistently — this is the golden rule of caching. If you serve the same

content on different pages, to different users, or from different sites, it should use

the same URL. This is the easiest and most effective way to make your site cache-

friendly. For example, if you use “/index.html” in your HTML as a reference once, al-

ways use it that way.

Use a common library of imagesUse a common library of images and other elements and refer back to them from

different places.

Make caches store images and pages that don’t change Make caches store images and pages that don’t change oftenoften by using a Cache-

Control: max-age header with a large value.

Make caches recognise regularly updated pagesMake caches recognise regularly updated pages by specifying an appropriate

max-age or expiration time.

If a resource (especially a downloadable file) changes, change If a resource (especially a downloadable file) changes, change its name.its name. That

way, you can make it expire far in the future, and still guarantee that the correct ver-

sion is served; the page that links to it is the only one that will need a short expiry

time.

Don’t change files unnecessarily.Don’t change files unnecessarily. If you do, everything will have a falsely young

Last-Modified date. For instance, when updating your site, don’t copy over the en-

tire site; just move the files that you’ve changed.

Use cookies only where necessaryUse cookies only where necessary — cookies are difficult to cache, and aren’t

needed in most situations. If you must use a cookie, limit its use to dynamic pages.

Minimize use of SSLMinimize use of SSL — because encrypted pages are not stored by shared caches,

use them only when you have to, and use images on SSL pages sparingly.

Check your pages with Check your pages with REDbotREDbot — it can help you apply many of the concepts in

this tutorial.

Writing Cache-Aware Scripts
By default, most scripts won’t return a validator (a Last-Modified or ETag response

header) or freshness information (Expires or Cache-Control). While some scripts really

are dynamic (meaning that they return a different response for every request), many

(like search engines and database-driven sites) can benefit from being cache-friendly.

https://www.mnot.net/cache_docs/#SCRIPT
http://redbot.org/

Generally speaking, if a script produces output that is reproducible with the same re-

quest at a later time (whether it be minutes or days later), it should be cacheable. If the

content of the script changes only depending on what’s in the URL, it is cacheable; if

the output depends on a cookie, authentication information or other external criteria,

it probably isn’t.

The best way to make a script cache-friendly (as well as perform better) is to dump its

content to a plain file whenever it changes. The Web server can then treat it like any

other Web page, generating and using validators, which makes your life easier. Re-

member to only write files that have changed, so the Last-Modified times are pre-

served.

Another way to make a script cacheable in a limited fashion is to set an age-related

header for as far in the future as practical. Although this can be done with Expires,

it’s probably easiest to do so with Cache-Control: max-age, which will make the re-

quest fresh for an amount of time after the request.

If you can’t do that, you’ll need to make the script generate a validator, and then re-

spond to If-Modified-Since and/or If-None-Match requests. This can be done by

parsing the HTTP headers, and then responding with 304 Not Modified when ap-

propriate. Unfortunately, this is not a trival task.

Some other tips;

Don’t use POSTDon’t use POST unless it’s appropriate. Responses to the POST method aren’t kept

by most caches; if you send information in the path or query (via GET), caches can

store that information for the future.

Don’t embed user-specific information in the URLDon’t embed user-specific information in the URL unless the content generat-

ed is completely unique to that user.

Don’t count on all requests from a user coming from the same Don’t count on all requests from a user coming from the same hosthost, because

caches often work together.

Generate Generate Content-LengthContent-Length response headers. response headers. It’s easy to do, and it will allow the

response of your script to be used in a persistent connection. This allows clients to

request multiple representations on one TCP/IP connection, instead of setting up a

connection for every request. It makes your site seem much faster.

See the Implementation Notes for more specific information.

Frequently Asked Questions
What are the most important things to make cacheable?
A good strategy is to identify the most popular, largest representations (especially im-

ages) and work with them first.

How can I make my pages as fast as possible with caches?

https://www.mnot.net/cache_docs/#IMP-SCRIPT

How can I make my pages as fast as possible with caches?
The most cacheable representation is one with a long freshness time set. Validation

does help reduce the time that it takes to see a representation, but the cache still has to

contact the origin server to see if it’s fresh. If the cache already knows it’s fresh, it will

be served directly.

I understand that caching is good, but I need to keep statistics
on how many people visit my page!
If you must know every time a page is accessed, select ONE small item on a page (or the

page itself), and make it uncacheable, by giving it a suitable headers. For example, you

could refer to a 1x1 transparent uncacheable image from each page. The Referer head-

er will contain information about what page called it.

Be aware that even this will not give truly accurate statistics about your users, and is un-

friendly to the Internet and your users; it generates unnecessary traffic, and forces peo-

ple to wait for that uncached item to be downloaded. For more information about this,

see On Interpreting Access Statistics in the references.

How can I see a representation’s HTTP headers?
Many Web browsers let you see the Expires and Last-Modified headers are in a “page

info” or similar interface. If available, this will give you a menu of the page and any rep-

resentations (like images) associated with it, along with their details.

To see the full headers of a representation, you can manually connect to the Web server

using a Telnet client.

To do so, you may need to type the port (be default, 80) into a separate field, or you

may need to connect to www.example.com:80 or www.example.com 80 (note the space).

Consult your Telnet client’s documentation.

Once you’ve opened a connection to the site, type a request for the representation. For

instance, if you want to see the headers for http://www.example.com/foo.html, con-

nect to www.example.com, port 80, and type:

GET /foo.html HTTP/1.1 [return]
Host: www.example.com [return][return]

Press the Return key every time you see [return]; make sure to press it twice at the

end. This will print the headers, and then the full representation. To see the headers

only, substitute HEAD for GET.

My pages are password-protected; how do proxy caches deal

https://www.mnot.net/cache_docs/#REF

My pages are password-protected; how do proxy caches deal
with them?
By default, pages protected with HTTP authentication are considered private; they will

not be kept by shared caches. However, you can make authenticated pages public with

a Cache-Control: public header; HTTP 1.1-compliant caches will then allow them to be

cached.

If you’d like such pages to be cacheable, but still authenticated for every user, combine

the Cache-Control: public and no-cache headers. This tells the cache that it must sub-

mit the new client’s authentication information to the origin server before releasing

the representation from the cache. This would look like:

Whether or not this is done, it’s best to minimize use of authentication; for example, if

your images are not sensitive, put them in a separate directory and configure your

server not to force authentication for it. That way, those images will be naturally

cacheable.

Should I worry about security if people access my site through a
cache?
SSL pages are not cached (or decrypted) by proxy caches, so you don’t have to worry

about that. However, because caches store non-SSL requests and URLs fetched through

them, you should be conscious about unsecured sites; an unscrupulous administrator

could conceivably gather information about their users, especially in the URL.

In fact, any administrator on the network between your server and your clients could

gather this type of information. One particular problem is when CGI scripts put user-

names and passwords in the URL itself; this makes it trivial for others to find and use

their login.

If you’re aware of the issues surrounding Web security in general, you shouldn’t have

any surprises from proxy caches.

I’m looking for an integrated Web publishing solution. Which
ones are cache-aware?
It varies. Generally speaking, the more complex a solution is, the more difficult it is to

cache. The worst are ones which dynamically generate all content and don’t provide

validators; they may not be cacheable at all. Speak with your vendor’s technical staff for

more information, and see the Implementation notes below.

Cache-Control: public, no-cache

My images expire a month from now, but I need to change them
in the caches now!
The Expires header can’t be circumvented; unless the cache (either browser or proxy)

runs out of room and has to delete the representations, the cached copy will be used

until then.

The most effective solution is to change any links to them; that way, completely new

representations will be loaded fresh from the origin server. Remember that any page

that refers to these representations will be cached as well. Because of this, it’s best to

make static images and similar representations very cacheable, while keeping the

HTML pages that refer to them on a tight leash.

If you want to reload a representation from a specific cache, you can either force a re-

load (in Firefox, holding down shift while pressing ‘reload’ will do this by issuing a

Pragma: no-cache request header) while using the cache. Or, you can have the cache

administrator delete the representation through their interface.

I run a Web Hosting service. How can I let my users publish
cache-friendly pages?
If you’re using Apache, consider allowing them to use .htaccess files and providing ap-

propriate documentation.

Otherwise, you can establish predetermined areas for various caching attributes in

each virtual server. For instance, you could specify a directory /cache-1m that will be

cached for one month after access, and a /no-cache area that will be served with head-

ers instructing caches not to store representations from it.

Whatever you are able to do, it is best to work with your largest customers first on

caching. Most of the savings (in bandwidth and in load on your servers) will be realized

from high-volume sites.

I’ve marked my pages as cacheable, but my browser keeps re‐
questing them on every request. How do I force the cache to
keep representations of them?
Caches aren’t required to keep a representation and reuse it; they’re only required to

notnot keep or use them under some conditions. All caches make decisions about which

representations to keep based upon their size, type (e.g., image vs. html), or by how

much space they have left to keep local copies. Yours may not be considered worth

keeping around, compared to more popular or larger representations.

Some caches do allow their administrators to prioritize what kinds of representations

are kept, and some allow representations to be “pinned” in cache, so that they’re al-

ways available.

Implementation Notes — Web Servers
Generally speaking, it’s best to use the latest version of whatever Web server you’ve

chosen to deploy. Not only will they likely contain more cache-friendly features, new

versions also usually have important security and performance improvements.

Apache HTTP Server
Apache uses optional modules to include headers, including both Expires and Cache-

Control. Both modules are available in the 1.2 or greater distribution.

The modules need to be built into Apache; although they are included in the distribu-

tion, they are not turned on by default. To find out if the modules are enabled in your

server, find the httpd binary and run httpd -l; this should print a list of the available

modules (note that this only lists compiled-in modules; on later versions of Apache, use

httpd -M to include dynamically loaded modules as well). The modules we’re looking

for are expires_module and headers_module.

If they aren’t available, and you have administrative access, you can recompile

Apache to include them. This can be done either by uncommenting the appropriate

lines in the Configuration file, or using the -enable-module=expires and -enable-

module=headers arguments to configure (1.3 or greater). Consult the INSTALL file

found with the Apache distribution.

Once you have an Apache with the appropriate modules, you can use mod_expires to

specify when representations should expire, either in .htaccess files or in the server’s

access.conf file. You can specify expiry from either access or modification time, and ap-

ply it to a file type or as a default. See the module documentation for more informa-

tion, and speak with your local Apache guru if you have trouble.

To apply Cache-Control headers, you’ll need to use the mod_headers module, which

allows you to specify arbitrary HTTP headers for a resource. See the mod_headers doc-

umentation.

Here’s an example .htaccess file that demonstrates the use of some headers.

.htaccess files allow web publishers to use commands normally only found in config-

uration files. They affect the content of the directory they’re in and their subdirecto-

ries. Talk to your server administrator to find out if they’re enabled.

activate mod_expires

http://www.apache.org/
http://www.apache.org/docs/mod/mod_expires.html
http://www.apache.org/docs/mod/mod_headers.html

ExpiresActive On
Expire .gif's 1 month from when they're accessed
ExpiresByType image/gif A2592000
Expire everything else 1 day from when it's last modified
(this uses the Alternative syntax)
ExpiresDefault "modification plus 1 day"
Apply a Cache-Control header to index.html
<Files index.html>
Header append Cache-Control "public, must-revalidate"
</Files>

Note that mod_expires automatically calculates and inserts a Cache-Control:max-age

header as appropriate.

Apache 2’s configuration is very similar to that of 1.3; see the 2.2 mod_expires and mod-

_headers documentation for more information.

Microsoft IIS
Microsoft’s Internet Information Server makes it very easy to set headers in a somewhat

flexible way. Note that this is only possible in version 4 of the server, which will run

only on NT Server.

To specify headers for an area of a site, select it in the Administration Tools interface,

and bring up its properties. After selecting the HTTP Headers tab, you should see two

interesting areas; Enable Content Expiration and Custom HTTP headers. The first

should be self-explanatory, and the second can be used to apply Cache-Control head-

ers.

See the ASP section below for information about setting headers in Active Server Pages.

It is also possible to set headers from ISAPI modules; refer to MSDN for details.

Netscape/iPlanet Enterprise Server
As of version 3.6, Enterprise Server does not provide any obvious way to set Expires

headers. However, it has supported HTTP 1.1 features since version 3.0. This means that

HTTP 1.1 caches (proxy and browser) will be able to take advantage of Cache-Control

settings you make.

To use Cache-Control headers, choose Content Management | Cache Control Direc-

tives in the administration server. Then, using the Resource Picker, choose the direc-

tory where you want to set the headers. After setting the headers, click ‘OK’. For more

information, see the NES manual.

Implementation Notes — Server-Side Scripting
Because the emphasis in server-side scripting is on dynamic content, it doesn’t make

for very cacheable pages, even when the content could be cached. If your content

http://httpd.apache.org/docs/2.2/mod/mod_expires.html
http://httpd.apache.org/docs/2.2/mod/mod_headers.html
http://www.microsoft.com/
http://www.redhat.com/docs/manuals/ent-server/

One thing to keepOne thing to keep

in mind is that itin mind is that it

may be easier tomay be easier to

set HTTP headersset HTTP headers

with your Webwith your Web

server rather thanserver rather than

in the scriptingin the scripting

language. Trylanguage. Try

both.both.

changes often, but not on every page hit, consider

setting a Cache-Control: max-age header; most

users access pages again in a relatively short period

of time. For instance, when users hit the ‘back’ but-

ton, if there isn’t any validator or freshness infor-

mation available, they’ll have to wait until the page

is re-downloaded from the server to see it.

CGI
CGI scripts are one of the most popular ways to gen-

erate content. You can easily append HTTP response

headers by adding them before you send the body;

Most CGI implementations already require you to do this for the Content-Type header.

For instance, in Perl;

#!/usr/bin/perl
print "Content-type: text/html\n";
print "Expires: Thu, 29 Oct 1998 17:04:19 GMT\n";
print "\n";
the content body follows...

Since it’s all text, you can easily generate Expires and other date-related headers with

in-built functions. It’s even easier if you use Cache-Control: max-age;

This will make the script cacheable for 10 minutes after the request, so that if the user

hits the ‘back’ button, they won’t be resubmitting the request.

The CGI specification also makes request headers that the client sends available in the

environment of the script; each header has ‘HTTP_’ prepended to its name. So, if a

client makes an If-Modified-Since request, it will show up as

HTTP_IF_MODIFIED_SINCE.

See also the cgi_buffer library, which automatically handles ETag generation and valida-

tion, Content-Length generation and gzip content-coding for Perl and Python CGI

scripts with a one-line include. The Python version can also be used to wrap arbitrary

CGI scripts with.

Server Side Includes
SSI (often used with the extension .shtml) is one of the first ways that Web publishers

print "Cache-Control: max-age=600\n";

http://www.mnot.net/cgi_buffer/

were able to get dynamic content into pages. By using special tags in the pages, a limit-

ed form of in-HTML scripting was available.

Most implementations of SSI do not set validators, and as such are not cacheable. How-

ever, Apache’s implementation does allow users to specify which SSI files can be

cached, by setting the group execute permissions on the appropriate files, combined

with the XbitHack full directive. For more information, see the mod_include docu-

mentation.

PHP
PHP is a server-side scripting language that, when built into the server, can be used to

embed scripts inside a page’s HTML, much like SSI, but with a far larger number of op-

tions. PHP can be used as a CGI script on any Web server (Unix or Windows), or as an

Apache module.

By default, representations processed by PHP are not assigned validators, and are

therefore uncacheable. However, developers can set HTTP headers by using the Head-

er() function.

For example, this will create a Cache-Control header, as well as an Expires header

three days in the future:

<?php
 Header("Cache-Control: must-revalidate");

 $offset = 60 * 60 * 24 * 3;
 $ExpStr = "Expires: " . gmdate("D, d M Y H:i:s", time() + $offset) . " GMT";
 Header($ExpStr);
?>

Remember that the Header() function MUST come before any other output.

As you can see, you’ll have to create the HTTP date for an Expires header by hand; PHP

doesn’t provide a function to do it for you (although recent versions have made it easi-

er; see the PHP's date documentation). Of course, it’s easy to set a Cache-Control: max-

age header, which is just as good for most situations.

For more information, see the manual entry for header.

See also the cgi_buffer library, which automatically handles ETag generation and valida-

tion, Content-Length generation and gzip content-coding for PHP scripts with a one-

line include.

Cold Fusion

http://www.apache.org/docs/mod/mod_include.html
http://www.php.net/
http://php.net/date
http://www.php.net/manual/function.header.php3
http://www.mnot.net/cgi_buffer/

Cold Fusion, by Macromedia is a commercial server-side scripting engine, with sup-

port for several Web servers on Windows, Linux and several flavors of Unix.

Cold Fusion makes setting arbitrary HTTP headers relatively easy, with the CFHEADER

tag. Unfortunately, their example for setting an Expires header, as below, is a bit mis-

leading.

It doesn’t work like you might think, because the time (in this case, when the request is

made) doesn’t get converted to a HTTP-valid date; instead, it just gets printed as a rep-

resentation of Cold Fusion’s Date/Time object. Most clients will either ignore such a val-

ue, or convert it to a default, like January 1, 1970.

However, Cold Fusion does provide a date formatting function that will do the job;

GetHttpTimeString. In combination with DateAdd, it’s easy to set Expires dates; here,

we set a header to declare that representations of the page expire in one month;

<cfheader name="Expires"
 value="#GetHttpTimeString(DateAdd('m', 1, Now()))#">

You can also use the CFHEADER tag to set Cache-Control: max-age and other headers.

Remember that Web server headers are passed through in some deployments of Cold

Fusion (such as CGI); check yours to determine whether you can use this to your advan-

tage, by setting headers on the server instead of in Cold Fusion.

ASP and ASP.NET
Active Server Pages, built into IIS and also available for other Web servers, also allows

you to set HTTP headers. For instance, to set an expiry time, you can use the properties

of the Response object;

specifying the number of minutes from the request to expire the representation.

Cache-Control headers can be added like this:

In ASP.NET, Response.Expires is deprecated; the proper way to set cache-related head-

<CFHEADER NAME="Expires" VALUE="#Now()#">

<% Response.Expires=1440 %>

<% Response.CacheControl="public" %>

http://www.macromedia.com/software/coldfusion/
http://www.macromedia.com/
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000270.htm
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000483.htm
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000437.htm

When settingWhen setting

HTTP headersHTTP headers

from ASPs, makefrom ASPs, make

sure you eithersure you either

place the Responseplace the Response

method calls be-method calls be-

fore any HTMLfore any HTML

generation, or usegeneration, or use

Response.BufferResponse.Buffer

to buffer the out-to buffer the out-

put. Also, noteput. Also, note

that some versionsthat some versions

of IIS set a of IIS set a Cache-Cache-

Control: privateControl: private

header on ASPs byheader on ASPs by

default, and mustdefault, and must

be declared publicbe declared public

to be cacheable byto be cacheable by

shared caches.shared caches.

ers is with Response.Cache;

Response.Cache.SetExpires (DateTime.Now.AddMinutes (60)) ;
Response.Cache.SetCacheability (HttpC-
acheability.Public) ;

References and Further Infor‐
mation
HTTP 1.1 Specification
The HTTP 1.1 spec has many extensions for making

pages cacheable, and is the authoritative guide to

implementing the protocol. See sections 13, 14.9,

14.21, and 14.25.

Web-Caching.com
An excellent introduction to caching concepts, with

links to other online resources.

On Interpreting Access Statistics
Jeff Goldberg’s informative rant on why you

shouldn’t rely on access statistics and hit counters.

REDbot
Examines HTTP resources to determine how they will interact with Web caches, and

generally how well they use the protocol.

cgi_buffer Library
One-line include in Perl CGI, Python CGI and PHP scripts automatically handles ETag

generation and validation, Content-Length generation and gzip Content-Encoding —

correctly. The Python version can also be used as a wrapper around arbitrary CGI

scripts.

About This Document
This document is Copyright © 1998-2013 Mark Nottingham <mnot@mnot.net>. This

work is licensed under a Creative Commons Attribution-Noncommercial-No De-

rivative Works 3.0 Unported License.

All trademarks within are property of their respective holders.

http://www.ietf.org/rfc/rfc2616.txt
http://www.web-caching.com/
http://www.goldmark.org/netrants/webstats/
http://redbot.org/
http://www.mnot.net/cgi_buffer/
mailto:mnot@mnot.net
http://creativecommons.org/licenses/by-nc-nd/3.0/

Although the author believes the contents to be accurate at the time of publication, no

liability is assumed for them, their application or any consequences thereof. If any mis-

representations, errors or other need for clarification is found, please contact the au-

thor immediately.

The latest revision of this document can always be obtained from http://www.m-

not.net/cache_docs/

Translations are available in: Chinese, Czech, German, and French.

6 May, 2013

http://www.mnot.net/cache_docs/
http://www.chedong.com/tech/cache_docs.html
http://www.jakpsatweb.cz/clanky/caching-tutorial-czech-translation.html
http://www.2uo.de/caching-tutorial/
https://www.mnot.net/cache_docs/index.fr.html
http://creativecommons.org/licenses/by-nc-nd/3.0/

