
!"#"$%&'()**(+,-,-./01*

201340*%5++*

%67(899:*

JavaScript: Objects & Classes

…and functions and arrays

They’re all the same really.

JavaScript Objects

• A JavaScript object has properties
associated with it.

objectName.propertyName

• Define a property by assigning it a value
myCar.make = "Ford";

!myCar.model = "Mustang";!

myCar.year = 1969;

JavaScript Arrays, err, Objects

• An array is an ordered set of values
associated with a single variable name.

• Properties and arrays are different interfaces
to the same data structure.
myCar["make"] = "Ford" !

myCar["model"] = "Mustang”

!myCar["year"] = 1967

• NB array subscripts can contain illegal object
property characters e.g. space

Creating an Array

• Either use an array constructor
arrayObjectName = new Array(element0, element1, …)!

arrayObjectName = new Array(arrayLength)

• Or use an array literal
coffees = ["French Roast", "Columbian", "Kona"]

• Predefined array field
array.length current maximum size of array.

Creating a New Function

• Use an function declaration:
function square(number) {

 !return number * number;!}

• Or a function expression:
square = function (number) {

 !return number * number;!}

• Or a function constructor:
multiply = new Function("x", "y", "return x * y")

• e.g.
map(function(x) {return x * x * x}, [0, 1, 2, 5, 10]);

Creating a New Object

• Use the builtin object types

• var today = new Date()

• var xmas = new Date(2007,11,25)

• var myObj = new Object()

Creating a New Object

• Use an object initializer:
objectName = {property1:value1, property2:value2,

property3:value3, …}

• Create myHonda object with 3 properties.
myHonda = {color:"red", wheels:4,

engine:{cylinders:4, size:2.2} }

• Note that the third property is an object in

its own right.

Creating a New Object

• Alternatively,
– Define the object type by writing a constructor function

that specifies its name, properties, and methods.

– Create an instance of the object with new.
function car(make, model, year){

!"""this.make = make;

!"""this.model = model;

!"""this.year = year;!

 }

 mycar = new car("Eagle", "Talon TSi", 1993);

• Create methods by assigning function expressions
as property values.

JavaScript Has No Classes!

• In Java, all objects are made by instantiating
class definitions

• In JavaScript, objects are made manually, by
adding property/value pairs to an empty
object

• Constructors help you do this automatically

• Prototypes (see next slide) let you inherit
missing fields (class variables, methods) from
other objects.
– “class” constructor functions

– instances of “superclass” objects

Creating an Object Prototype

• You can add a property to a previously

defined object type by using the prototype

property.

• This defines a property that is shared by all

objects of the specified type.

• The protoype is a property of the object

constructor function
car.prototype.color=null; //”class” variable

!car1.color="black"; //”object” value

Inheritance via Prototypes

• JavaScript objects inherit properties from a
prototype object.

• If a property is not found in an object then its
prototype property is checked to see if it does
have that property.

• If the prototype object does not have the
property then its prototype is checked.

• The prototype for an object is set by the
prototype property of the constructor function
that was used to create and initialize the
object.

Inheritance Example

function Circle(x, y, r) { this.x=x; this.y=y ; this.r=r }

Circle.prototype.pi = 3.14159

circumference() {return 2 * this.pi * this.r }

Circle.prototype.circumference = circumference

Circle.prototype.area = function () { return this.pi * this.r * this.r }

Example use var c = new Circle(0.0,0.0,10.0);
var a = c.area(); var p = c.circumference();

Subclassing Example

• To make a ‘subclass’

– set the prototype property of the constructor

function to be an instance of the !superclass’

– Don’t foprget there are no classes so there are no

real superclasses or subclasses!

Employee(){ this.name = ””;

this.dept = "general" }

function Manager() { this.reports = [] }

Manager.prototype = new Employee();

