JAVASCRIPT Prototypes

Leslie Carr
COMP3001

JavaScript: Objects & Classes

...and functions and arrays
They're all the same really.

JavaScript Objects

« A JavaScript object has properties
associated with it.

objectName . propertyName

* Define a property by assigning it a value
myCar .make = "Ford";
myCar.model = "Mustang";
myCar.year = 1969;

JavaScript Arrays, err, Objects

« An array is an ordered set of values
associated with a single variable name.

* Properties and arrays are different interfaces
to the same data structure.

myCar["make"] = "Ford"
myCar["'model"] = "Mustang”
myCar["year"] = 1967

* NB array subscripts can contain illegal object
property characters e.g. space

Creating an Array

« Either use an array constructor

arrayObjectName = new Array(element0, elementl, ..)
arrayObjectName = new Array(arrayLength)

* Or use an array literal

coffees = ["French Roast", "Columbian", "Kona"]

* Predefined array field
array.length current maximum size of array.

Creating a New Function

Use an function declaration:

function square(number) ({
return number * number;}

Or a function expression:

square = function (number) {

return number * number;}

Or a function constructor:

multiply = new Function('"x", "y", "return x * y")

e.g.

map (function(x) {return x * x * x}, [0, 1, 2, 5, 10]);

Creating a New Object

Use the builtin object types

var today = new Date()
var xmas = new Date(2007,11,25)
var myODbj = new Object()

Creating a New Object

* Use an object initializer:

objectName = {propertyl:valuel, property2:value2,
property3:value3d, ..}

* Create myHonda object with 3 properties.

myHonda = {color:"red", wheels:4,
engine:{cylinders:4, size:2.2} }

* Note that the third property is an object Iin
its own right.

Creating a New Object

« Alternatively,

— Define the object type by writing a constructor function
that specifies its name, properties, and methods.

— Create an instance of the object with new.
function car(make, model, year){
this.make = make;

this.model = model;

this.year = year;

}

mycar = new car('Eagle", "Talon TSi", 1993);

« Create methods by assigning function expressions
as property values.

JavaScript Has No Classes!

In Java, all objects are made by instantiating
class definitions

In JavaScript, objects are made manually, by
adding property/value pairs to an empty
object

Constructors help you do this automatically

Prototypes (see next slide) let you inherit
missing fields (class variables, methods) from
other objects.

— “class” constructor functions

— instances of “superclass” objects

Creating an Object Prototype

* You can add a property to a previously
defined object type by using the prototype
property.

* This defines a property that is shared by all
objects of the specified type.

« The protoype is a property of the object
constructor function

car.prototype.color=null; //”class” variable
carl.color="black"; //"object” wvalue

Inheritance via Prototypes

JavaScript objects inherit properties from a
prototype object.

If a property is not found in an object then its
prototype property is checked to see if it does
have that property.

If the prototype object does not have the
property then its prototype is checked.

The prototype for an object is set by the
prototype property of the constructor function
that was used to create and initialize the
object.

Inheritance Example

function Circle(x, y, r) { this.x=x; this.y=y ; this.r=r }

Circle.prototype.pi = 3.14159

circumference() {return 2 * this.pi * this.r }
Circle.prototype.circumference = circumference

Circle.prototype.area = function () { return this.pi * this.r * this.r }

Example use var ¢ = new Circle(0.0,0.0,10.0);
var a = c.area(); var p = c.circumference();

Subclassing Example

e To make a ‘subclass’

— set the prototype property of the constructor
function to be an instance of the ‘superclass’

— Don’t foprget there are no classes so there are no
real superclasses or subclasses!

Employee(){ this.name = "";
this.dept = "general" }

function Manager() { this.reports = [] }
Manager.prototype = new Employee();

