
Topics on
Web Services
COMP6017

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk
2013-2014

Module Aims

2

• Introduce you to service oriented architectures

• Introduce you to both traditional and RESTful Web Services

• Give you in-depth knowledge of Web Services

• Give you practical hands-on experience of RESTful Web
Services

People

3

Office hours for nmg: Friday 1100-1200

Nick Gibbins Enrico Costanza

Module Structure

4

One double lecture each week

– Friday 0900-1100, 05/2015

– Note: extra slots in timetable in week 4 are incorrect

Assessment

– 75% Exam

– 25% Group Coursework

Coursework

5

One coursework worth 25% of your final mark

– Groups of three

– Construct a RESTful web service and client using JavaScript and
node.js

– Coursework specification published on Friday of week 5

– Deadline on Tuesday of week 11 (10th December)

– Feedback by the end of week 12

Teaching Schedule

6

Week 1 Overview
 Web Services Architecture
 Architecture of the World Wide Web

Week 2 CANCELLED

Week 3 Web Protocols: HTTP
 REST and Resource Oriented Architectures

Week 4 Web Protocols: SOAP
 REST in Practice

Week 5 Service Description: WSDL
 Introduction to JavaScript and node.js

Teaching Schedule

7

Week 6 Service Discovery: UDDI
 Coursework Briefing

Week 7 Addressing and Policy
 Coursework Support

Week 8 Security
 Coursework Support

Week 9-11 Coursework Support

Week 12 Review

Service Orientation

Service Orientation
• Component-based software design paradigm

• Organise and use heterogeneous distributed capabilities

• Many existing technologies:

– Java RMI, CORBA, DCOM, WCF, Web Services, REST

What is a service?

10

• Services as contractually defined behaviours

• Services as task-performing components

• Services as collections of related capabilities

• Services combine information and behaviour

8 Principles for Service Orientation
• Loose coupling

• Shared formal contracts

• Abstraction

• Composability

• Reusability

• Autonomy

• Statelessness

• Discoverability
11

Loose Coupling

12

Coupling is a measure of the degree of dependency between
components

– Tight coupling limits flexibility

– Loose coupling promotes ad hoc reuse of components

Shared Formal Contract

13

Services have descriptions that document:

– programmatic interface

– communication requirements and protocols

– constraints

– usage policies

Abstraction

14

Service contract describes the external view of a service

– service internals are hidden

– limits formation of dependencies (loosens coupling)

Service internals may change with minimal impact on clients

Composability

15

Service abstraction allows the encapsulation of other services

– internally, a service may be a client of other services

– services may aggregate several services

Reusability

16

Separation of concerns encourages reuse of components

– Service contracts describe services to clients

Autonomy

17

Services exist independently

Services control their underlying logic

– subject to commitments made in service contracts

Statelessness

18

State consists of data specific to current activity

– State management consumes resources

Statelessness increases scalability and availability

Discoverability

19

Service discovery is key to SOA

– service contracts describe services to facilitate consumption by
potential clients

– clients may search for services by the features of their contracts

Architecture

20

What is an architecture?
• Logical architecture

• Process architecture

• Development architecture

• Physical architecture

21

Logical Architecture
Primarily supports the functional requirements

– i.e. what the system should provide in terms of services to its users.

The system will be decomposed into a set of abstractions, and
their high level interactions will be identified

22

Process Architecture
Takes into account some non-functional requirements, such
as performance and availability

Addresses issues of concurrency and distribution, of system
integrity, of fault-tolerance

23

Development Architecture
Focuses on the actual software module organisation, including
libraries

24

Physical Architecture
Takes into account primarily the non-functional requirements
of the system

– availability

– reliability

– performance

– scalability

25

… what about COMP6017?

26

• We are essentially going to cover a logical architecture,
identifying core functionality offered by Web Services.

• Some elements of process architecture, and in particular
concurrency and distribution, will be addressed too.

• We discuss the development architecture, when investigating
REST.

Introduction to
Web Services

Web Service Definition
• A Web Service is a software system designed to support

interoperable machine-to-machine interaction over a
network.

• It has an interface described in a machine-processable
format (specifically WSDL).

• Other systems interact with the Web service in a manner
prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

 (Web Service Glossary)
34

Discussion
• Not universally accepted

• Too minimalist: does not mention policies, choreography,
security

• Too specific, refers to standards that are not universally
accepted (e.g., wsdl)

35

Service Definition
• A service is a mechanism to enable access to a set of

capabilities, where the access is provided using a prescribed
interface and is exercised consistent with constraints and
policies as specified by the service description.

• A service is provided by one entity for use by others, but the
eventual consumers of the service may not be known to the
service provider and may demonstrate uses of the service
beyond the scope originally conceived by the provider.
(OASIS SOA Reference Model)

36

Engaging a Web Service

37

Roles (1): service vs. agent

38

• A Web Service is an abstract notion that must be
implemented by a concrete agent.

• The Agent is the concrete piece of software that sends and
receives messages, while the service is the resource
characterized by the abstract set of functionality that is
provided

Roles (2): provider vs requester

39

• The service provides functionality on behalf of its owner (a
person or organisation): the provider entity.

• A requester entity is a person or organization that wishes
to make use of a provider entity's Web service.

• A requester entity uses a requester agent to exchange
messages with the provider entity's provider agent.

Roles (3): description

40

• The mechanics of the message exchange are documented in a
Web Service description.

• It defines the

– message formats,

– datatypes,

– transport protocols, and

–  transport serialization formats

that should be used between the requester agent and the
provider agent.

Roles (4): semantics

41

• The semantics of a Web service is the shared expectation
about the behaviour of the service, in particular in response
to messages that are sent to it.

• In effect, this is the contract between the requester entity
and the provider entity regarding the purpose and
consequences of the interaction.

Engaging a Web Service

42

1.  The requester and provider entities become known to each
other (or at least one becomes known to the other);

2.  The requester and provider entities somehow agree on the
service description and semantics that will govern the
interactions between them;

3.  The service description and semantics are exploited by the
requester and provider agents;

4.  The requester and provider agents exchange messages.
(I.e., the exchange of messages with the provider agent
represents the concrete manifestation of interacting with
the provider entity's Web service.)

Web Service Models

43

Web Service Models
• Message Oriented Model

• Service Oriented Model

• Resource Oriented Model

• Policy Model

44

Focuses on messages, message
structure, message transport and so
on

Message Oriented Model

45

Focuses on aspects of
service, action and so on.

- In any distributed
system, services
cannot be adequately
realized without some
means of messaging,
the converse is not the
case: messages do not
need to relate to
services.

Service Oriented Model

46

Focuses on resources that exist and
have owners.

Resource Oriented Model

47

Focuses on constraints on the
behaviour of agents and services.

- Generalize to resources

- Policies can apply equally to
documents (such as service
descriptions) as well as
active computational
resources.

Policy Model

48

Conclusion

49

• No agreed definition of what a Web Service is, but a
reasonable intuition

• Not a single vision for Web Services (multiple
standardisation committees, etc)

• Multiple and competing WS stacks

• Architecture does not discuss resources with state

