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On Building Better Classes (Recap)

• Object-oriented Techniques

– Encapsulation: A class should be responsible for managing itself

– Inheritance: Super- and sub-classes

– Polymorphism: Substitution, overriding, and dynamic binding

• Error Handling:

– Print and default

– Error codes

– Exceptions

• Debugging: Syntax vs logical errors

• Testing strategies: Equivalence classes and boundary value
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On Building Better Classes (Recap)

• Duplication

• Coupling

• Cohesion

• Responsibility-Driven Design

• Refactoring
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Coming Up

• Analysis and Design

– Noun Verb Analysis 

• Software Engineering

• Design Patterns



Part 1

Analysis and Design
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The Noun/Verb Method

• Given a written problem – identifying the nouns and verbs can help to reveal the 
potential classes, data and methods

• The nouns in a description refer to ‘things’.

– A source of classes and objects.

• The verbs refer to actions.

– A source of interactions between objects.

– Actions are behaviour, and hence methods.
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Noun Phrase Parsing

• In order to find the key objects and actions

– Search through the problem definition and 

– extract all the noun phrases

• Noun phrases are phrases which describe, individuate or pick-out things in the 
world

– for example, "customer" individuates an entity which will be represented in the system

• Don't worry about whether or not the noun phrases should be part of the final 
solution, just meticulously list the noun phrases. 
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A Problem Description

The cinema booking system should store seat bookings for multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of a given movie at a certain 
time).

Shows are at an assigned date and time and scheduled in a theatre where they are 
screened.

The system stores the customers’ telephone numbers.
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Nouns?

The cinema booking system should store seat bookings for multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of a given movie at a certain 
time).

Shows are at an assigned date and time and scheduled in a theatre where they are 
screened.

The system stores the customers’ telephone numbers.
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Verb Phrase Parsing

• In order to find the common processes, look for verb phrases:

– those which describe "doing things", 

– for example “store” is a process which summarises part of the process

• Don't worry about whether or not the verb phrases describe the final processes of 
the system, or whether or not one subsumes the description of the other, just list 
them. 
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Verbs?

The cinema booking system should store seat bookings for multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of a given movie at a certain 
time).

Shows are at an assigned date and time and scheduled in a theatre where they are 
screened.

The system stores the customers’ telephone numbers.
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Verbs?

The cinema booking system should store seat bookings for multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of a given movie at a certain 
time).

Shows are at an assigned date and time and scheduled in a theatre where they are 
screened.

The system stores the customers’ telephone numbers.
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Tidy up the Lists

• Most often, the requirements will be from a domain of discourse or "mini-world" -- a 
given requirements specification will be in the language of a particular work 
practice, such as hospitality.  Given this, you can:

– remove synonyms (noun phrases which mean the same thing in the domain of 
discourse).   

– Ignore pronouns and articles such as “the”, because they refer to an object/noun phrase 
in the context of the rest of the sentences.  
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Sketch Processes

• Look for Noun Verb pairs

– Reserve Seats

– Request Booking

• The processes may be described at different levels of detail

– E.g. Store Booking is part of Reserve Seats

• Figure out which noun-verb pairs are parts of another

• But Beware! 

– Sometimes there will be a high-level phrase (Reserve Seats)

– But sometimes there won’t be

• Invent one by grouping together the lower-level phrases
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The cinema booking system should store seat bookings for multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of a given movie at a 
certain time).

Shows are at an assigned date and time and scheduled in a theatre where they 
are screened.

The system stores the customers’ telephone numbers.

Nouns-Verb 
Phrases?

Cinema booking system
- Stores seat bookings
- Stores telephone number

Seat booking
• Is for a show

Theatre
- Has seats

Seat
• Arranged in rows

Row

Customer
- Reserves seats
- Is given row number, seat number
- Requests seat booking

Row number

Seat number

Show
- Is scheduled in theatre

Movie

Date

Time

Telephone number
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Stepwise Refinement

• This process of understanding a problem is called Stepwise Refinement

• We take the problem and:

– decompose (break-down)

– elaborate (add an appropriate level of detail)

• However, it is an iterative process involving much re-writing

• So the last step is to revise the design 

– (revisiting any of the previous steps as necessary)

– This will continue until we are happy that we have a working design



Part 2

Software Engineering
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Documentation

• Write class comments.

• Write method comments.

• Describe the overall purpose of each.

• Documenting now ensures that:

– The focus is on what rather than how.

– That it does not get forgotten!



20

Cooperation

• Team-working is likely to be the norm, not the exception.

• Documentation is essential for teamworking.

• Clean O-O design, with loosely-coupled components, also supports cooperation.
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Prototyping

• Supports early investigation of a system.

– Early problem identification.

• Incomplete components can be simulated.

– E.g. always returning a fixed result.

– Avoid random behaviour which is difficult to reproduce.



22

Software Growth

• Waterfall model.

– Analysis

– Design

– Implementation

– Unit testing

– Integration testing

– Delivery

• No provision for iteration.
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“How the customer 
explained it”
or
“The Tree Swing Story”
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Iterative Development

• Use early prototyping.

• Frequent client interaction.

• Iteration over:

– Analysis

– Design

– Prototype

– Client feedback

• A growth model is the most realistic.



Part 3

Design Patterns
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Using Design Patterns

• Inter-class relationships are important and can be complex.

• Some relationships recur in different applications.

• Design patterns help clarify relationships, and promote reuse.

• For example, the iterator pattern.
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Pattern Structure

• A pattern name.

• The problem addressed by it.

• How it provides a solution:

– Structures, participants, collaborations.

• Its consequences.

– Results, trade-offs.
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The Decorator Pattern

• Augments the functionality of an object.

• The decorator object wraps another object.

– The Decorator has a similar interface.

– Calls are relayed to the wrapped object ...

– ... but the Decorator can interpolate additional actions.

• Example: java.io.BufferedReader

– Wraps and augments an unbuffered Reader object.
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The Singleton Pattern

• Ensures only a single instance of a class exists.

– All clients use the same object.

• The constructor is private to prevent external instantiation.

• Single instance obtained via a static getInstance method.

• Example: Canvas in a GUI project.
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The Factory Method Pattern

• A creational pattern.

• Clients require an object of a particular interface type or superclass type.

• A factory method is free to return an implementing-class object or subclass object.

• The exact type returned depends on context.

• Example: iterator methods of the Collection classes.
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The Observer Pattern

• Supports separation of internal model from a view of that model.

• Observer defines a one-to-many relationship between objects.

• The object-observed notifies all Observers of any state change.

• Example: Different  Views of a database 



Part 4

Summary
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Summary

• Object Oriented Design and Analysis is complex

– Noun Verb Analysis can get you started

– Don’t be afraid to refactor your designs

– There are no right answers (but some answers are better than others)

• An iterative approach to design, analysis and implementation can be beneficial.

– Regard software systems as entities that will grow and evolve over time.
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Summary

• Work in a way that facilitates collaboration with others.

• Design flexible, extendible class structures.

– Being aware of existing design patterns will help you to do this.

• Continue to learn from your own and others’ experiences.
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Final Word

• Programming is both challenging and rewarding

– It is a craft (both an art and a skill)

• Take pleasure in doing it well

• And Have Fun!



YOUR QUESTIONS
Analysis and Design
• Noun Verb Analysis 

Software Engineering

Design Patterns
• Decorator
• Singleton

• Factory method
• Observer


