
 1

Learning to Program Python 3 on Windows
Here we will use the python programming language to make a game of hangman, starting from
scratch, working on a Windows based system.

It takes a couple hours to learn enough programming to make a simple game.

We will learn about:

• Memory and naming
• Computer arithmetic
• Using and learning libraries
• How to make a program
• Input and output
• Loops and choices
• Connecting to the internet

At the end we will have a game we can play.

This page was originally posted at http://davidbau.com/python for teaching a small group of
third-graders. (Slides here.) (Printable here.)

For more in-depth Python programming, have a look at “How to Think Like a Computer
Scientist” at http://openbookproject.net/thinkcs/python/english3e/

Running Python within ECS

To start with, double click the ‘Computer’ icon the desktop.

In the address bar in the file browser that opens, type in \\pieces\python and press Enter on
the keyboard

After pressing Enter, you should see an option labelled Python GUI. Double click on it

 2

This should open the main Python Shell

The >>> means that python is waiting for you to program something.

Running Python at Home

If you want to try out Python at home, you can download it for Mac or PC from
http://www.python.org/getit/ - If you use Python on Windows, after you’ve downloaded and
installed it from the Python Website (using the Windows Installer download), you can go to the
Start Menu and select IDLE (Python GUI) to start Python.

If you use a Mac, Python comes with the computer. For more instructions on how to use it on a
Mac, read the original guide at http://davidbau.com/python/printable.html

 3

Keeping a Secret

Python can remember things, so let's tell it to remember our secret word.

>>> secret = 'crocodile'
>>>

You can tell it to print something by saying print.

>>> print(secret)
crocodile
>>>

Python will remember the secret until you quit. So you can always go back and print your secret
again by saying "print secret."

Now try to print something python doesn't know.

>>> print(number)
Traceback (most recent call last):
 File "", line 1, in
NameError: name 'number' is not defined
>>>

Don't worry. This is fine. You can just teach python what "number" is and try again.

>>> number = 43
>>> print(number)
43
>>>

 4

Computers are Good Calculators

Your computer is better than any calculator at doing math. Let's try some.

>>> print(2+33+66)
101
>>> print(33333333 * 44444444)
1481481451851852
>>> n=123456789
>>> print(n*n*n)
1881676371789154860897069
>>>

In Python, plus and minus are normal but times and divide are done using the * and / symbol.
Some other symbols to know:

+ plus
- minus
* times
/ divide, rounding

down

 x = 95 save 95 as x
x ==
24

is x equal to 24?

x < 24 is x less than 24?
x > 24 is x more than

24?

 len(word) the length of word
str(num) turns num into a string of

digits
int(digits) makes a number from a

string

What will it do when we say "len(str(1234))"?

Try your own fancy formulas. Don't worry if you get errors.

 5

Picking a Random Number

Python comes with libraries of functions that do almost anything.

Let's tell Python to pick a random number. Get the "random" library by typing this:

>>> import random
>>>

Now we can say "random.randint(1,100)" to pick a random number from 1 to 100.

>>> random.randint(1,100)
95
>>>

Which number did you get?

You can learn about libraries by saying help. Try typing this:

>>> help(random)
Help on module random:

NAME
 random - Random variable generators.
(...and on and on...)

It will show lots of information, and you can press the space bar to see a screenful at a time.
Eventually you will see a long list of all the functions in the library.

We don't have time to read it all now, so you can press "q" when you have seen enough.

You can use help() to ask about most things in python.

 6

Words and Numbers

What do you think happens when you try to do math with words?

>>> print('red' + 'yellow')
redyellow
>>> print('red' * 3)
redredred
>>> print('red' + 3)
Traceback (most recent call last):
 File "", line 1, in
TypeError: cannot concatenate 'str' and 'int' objects
>>>

If you add two words, it sticks them together. If you times a word by 3, it makes three copies.

Python doesn't know how to add a word and a number, so it says "cannot concatenate 'str' and
'int' objects." A word that you put in quotes is just a string of letters called a "str" in python.
Numbers that don't have a decimal point are integers and are called "int" in python.

You can't add a str and an int. But you can turn a number into a string if you use the str()
function.

>>> print('red' + str(3))
red3
>>>

 7

Using "for" to Repeat

You can repeat something with the "for" command.

If you say "for something in something:" with a colon (:) at the end, python will look for any
indented lines afterwards and repeat them. Try this:

>>> for letter in secret:
... print(letter)
...
c
r
o
c
o
d
i
l
e
>>>

Think about your program - it is saying "for every letter in the secret, do this next thing." The
computer repeats "print letter" nine times, once for each letter.

If it didn't work for you, don't worry. Press return and try again. Check that you put in the
extra spaces and the punctuation. Spaces at the beginning of a line do make a difference in
python.

Of course, in our game we shouldn't give away our secret word right away. So once you have the
hang of it, try this:

>>> for letter in secret:
... print('_', end=” “)
_ _ _ _ _ _ _ _ _
>>>

The comma at the end, followed by the words end=” “ tells Python to separate each with a
space, rather than with a new line, as you can see, the _ characters line up together, separated
with spaces. We’ll be using this a lot in this tutorial.

 8

Making Your Own Program

A program is just a file with code in it. Let's make one.

1. In the Python GUI, click the File Menu and then go to New Window – this will open a
programming window where you can start programming!

2. This will open up a new Window where you can start writing a program
3. Type the following in to write your first program

print('time to play hangman')

You should have something that looks like this, your programming window:

After that, you can write as many lines of python code as you like.

Save the file with the name "game.py" on your desktop, by selecting the Save option from the
File menu.

 9

Running Your Program

To run your program:

1. In the programming window where you have been writing your program, click Run and
then press Run Module

(Alternatively, just press the F5 button on the keyboard to run your program!)

2. The Python Shell should reappear showing the results of your program!

You should see something that looks like this:

That's it. You've made your first program!

 10

Programs are just Scripts

A program is just a script that a computer reads as quickly as it can. If we put a lot of lines of
code into a program, the computer will do them all, one after the other.

Try typing these extra lines into your programming window. Don't forget to save the file again.

print('time to play hangman')
secret = 'crocodile'
for letter in secret:
 print('_', end=” ”)

Now run the program by pressing F5

time to play hangman
_ _ _ _ _ _ _ _

See what happens? Everything in your program ran very quickly.

 11

Using "if" to Choose

In our hangman game, we should show where any guessed letters are. To decide whether to print
a line or a letter, we will need to use "if" and "else".

Try changing your program inside your programming window like this:

print('time to play hangman')
secret = 'crocodile'
guesses = 'aeiou'

for letter in secret:
 if letter in guesses:
 print(letter, end=” “)
 else:
 print('_', end=” “)

Don't forget to line everything up, and remember to save it.

What happens when you run it?

The line "if something in something:" makes a choice. If the letter is in our guesses, it prints the
letter. Otherwise it prints a little line ("else:" is how you say "otherwise" in python).

Since the whole thing is under the "for something in something", this choice is repeated for every
letter.

_ _ o _ o _ i _ e

Check your spelling and spacing and punctuation if you get errors. Take your time to get it to
work.

 12

Input with "input"

Our game is no good if you can't guess. To let the player guess we will use a function called
"input()."

It works like this:

answer = input('my question')

So try changing your program to look like this:

print('time to play hangman')
secret = 'crocodile'
guesses = 'aeiou'

guess = input('guess a letter: ')
guesses += guess

for letter in secret:
 if letter in guesses:
 print(letter, end=” “)
 else:
 print('_', end=” “)

The "guesses += guess" line add the guess to the string of guesses. If the string of guesses was
"aeiou" and the new guess is "c", then the string of guesses will become "aeiouc".

Let's run it.

guess a letter: c
c _ o _ o _ i _ e

You can guess any letter and it will show it to you.

 13

Using "while" to Repeat

We need to let the player take more than one turn.

The "while" command can repeat our program until the player is out of turns.

print('time to play hangman')
secret = 'crocodile'
guesses = 'aeiou'
turns = 5

while turns > 0:
 for letter in secret:
 if letter in guesses:
 print(letter, end=” “)
 else:
 print('_', end=” “)

 print()
 guess = input('guess a letter: ')
 guesses += guess
 turns -= 1

You need to indent everything under the "while" command to make this work. So you will need
to add some spaces in front of most of your program.

Let's also move the guessing after the hint instead of before.

The command "turns -= 1" means subtract one from "turns," so if it used to be 5, it will be 4.
Then the next time around it will be 3 and so on. When turns is finally zero, the "while"
command will stop repeating.

Try running your program. Does it work?

 14

Improving Our Game

We can already play our game. Now we need to fix it up so that it is fun.

1. The player should win right away when there are no missing letters.
2. The player should only lose a turn on a wrong guess.
3. When the player loses, the game should tell the secret.

Here is one way to improve it.

print('time to play hangman')
secret = 'crocodile'
guesses = 'aeiou'
turns = 5

while turns > 0:
 missed = 0
 for letter in secret:
 if letter in guesses:
 print(letter, end=” “)
 else:
 print('_', end=” “)
 missed += 1

 print

 if missed == 0:
 print('You win!')
 break

 guess = input('guess a letter: ')
 guesses += guess

 if guess not in secret:
 turns -= 1
 print('Nope.')
 print(turns, 'more turns')
 if turns == 0:
 print('The answer is', secret)

The "missed" number counts how many blanks we are still missing. If if is zero, it means we
won, and the "break" command breaks out of the "while" section early.

The "if guess not in secret" line checks if the guess was wrong. We only count down the "turns"
if our guess was wrong.

When we guess wrong, we also print a bunch of stuff like "Nope" and how many more turns we
have. When we are wrong for the last time we print the secret.

 15

Making it Look Like Hangman

It will be more fun if we make our game look like Hangman.

All we need to do is print parts of the poor hangman person when there is a wrong guess. Try
adding something like this to the wrong guess part:

...
 print('Nope.')
 print(turns, 'more turns')
 if turns < 5: print(' O ')
 if turns < 4: print(' _|_/ ')
 if turns < 3: print(' | ')
 if turns < 2: print(' / \ ')
 if turns < 1: print(' d b ')
 if turns == 0:
 print('The answer is', secret)

You can try drawing your own person with punctuation symbols like this.

 16

Picking a Random Secret

The only problem with the game is that it always plays the same secret word. We should use the
random library to choose a random word.

Add "import random" to the top of your program and change the line that sets up the secret so
that it looks like this:

import random

print('time to play hangman')
secret = random.choice(['tiger', 'panda', 'mouse'])
guesses = 'aeiou'
...

The square brackets [] and commas make a list, and the random.choice picks one thing
randomly from the list.

Of course, you can make the list as long as you like. Here is a longer list:

...
print('time to play hangman')
secret = random.choice([
 'crocodile',
 'elephant',
 'penguin',
 'pelican',
 'leopard',
 'hamster',
])
...

You can write a long list on lots of lines like this, as long as you remember to end any
parentheses () and brackets [] that you started. Don't forget to put a comma after each thing in
the list.

 17

Loading a List from the Internet

I have an even longer list of animals on the internet, at http://davidbau.com/data/animals.

If your computer happens to be connected to the internet, you can load this data in python using
a function called "urllib.request.urlopen". (URLs are what web addresses are called, so urllib
stands for "URL library," and urlopen means "open a URL."). We then need to tell it to
“decode” what it has read from the internet as bytecode, it into normal text using the
decode(“utf8”) function.

The code looks like this:

import urllib.request

animals =
urllib.request.urlopen('http://davidbau.com/data/animals').read().decode(“u
tf8”).split()
secret = random.choice(animals)

What this means is:

import urllib.request
Import the library called "urllib.request" to use.

animals =

urllib.request.urlopen('http://davidbau.com/data/animals').read().decode("u
tf8 ").split()

Open up the address http://davidbau.com/data/animals
animals =

urllib.request.urlopen('http://davidbau.com/data/animals').read().decode("u
tf8 ").split()

Read the whole webpage into a big string.
animals =

urllib.request.urlopen('http://davidbau.com/data/animals').read().decode("u
tf8 ").split()

Split the string into a list of words.
animals =
urllib.request.urlopen('http://davidbau.com/data/animals').read().decode("u
tf8 ").split()

Call the whole list "animals".
secret = random.choice(animals)

Choose a random one and call it "secret."

You can use urllib.request to load up more data than you could ever type in yourself.

 18

The Whole Hangman Program

Here is the whole program from beginning to end:

import random
import urllib.request

print('time to play hangman')
animals =
urllib.request.urlopen('http://davidbau.com/data/animals').read().decode("u
tf8").split()
secret = random.choice(animals)
guesses = 'aeiou'
turns = 5

while turns > 0:
 missed = 0
 for letter in secret:
 if letter in guesses:
 print(letter, end=” “)
 else:
 print('_', end=” “)
 missed += 1

 print

 if missed == 0:
 print('You win!')
 break

 guess = input('guess a letter: ')
 guesses += guess

 if guess not in secret:
 turns -= 1
 print('Nope.')
 print(turns, 'more turns')
 if turns < 5: print(' O ')
 if turns < 4: print(' _|_/ ')
 if turns < 3: print(' | ')
 if turns < 2: print(' / \ ')
 if turns < 1: print(' d b ')
 if turns == 0:
 print('The answer is', secret)

 19

More About Programming

The best part of programming is customizing your program to make it your own.

Can you make your hangman program harder or easier?

Can you make it automatically play again at the end of the game?

This webpage at python.org has more about programming in python.

