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The narrative

� Game basics

� Basic games - predicting behaviour when  individuals interact

� Predicting behaviour spread and evolution in a group (next session)

� Predicting behaviour spread in a network (next sessions)



The narrative

Game basics



What is a Game

• Individuals can act according to their self-interest 
when presented with choices

• But when more than one individuals interact with 
each other their choices can lead to different 
outcomes

• Acting according to self interest does not always 
yield the maximum profit in such cases

• How can we reason about behaviour?

• How can we predict outcomes?



Presentation or Exam?

• You and your partner need to work on your 
common project and your exam at the same time

• You need to make a choice between the two

• Your grades will be determined based on how well 
you do on both

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book



What is a Game

� A game is the environment where such interactions take place and it consists of:
� A set of participants: players

� Options per participant: strategies

� Benefit per choice of option: payoff
� Payoffs can be based on the choices not of one participant but of all participants

� They are shown in a payoff matrix



Prisoner’s Dilemma

� Two have been taken prisoners and are 
questioned by the police

� They are both guilty
� When questioned they are offered the option to 

confess
� Should both of them confess they will be convicted to 

serve in prison for 5 years

� Should just one of them confess, the confessor will be 
let free, while the other one will serve 10 years

� Should none of them confess, they will both serve a 
year for resisting arrest.

� Prisoners cannot communicate with each other



Prisoner’s Dilemma
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Prisoner’s Dilemma
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Best responses

• Let’s assume we have a player 1 and a player 2 with 
strategies S and T respectively.
• P1(S, T) and P2(S, T) are the payoffs for each player given 

their strategies.

• For a player, a best response is the best choice they 
can make given a certain expectation of a choice 
from the other player

• Given a choice of a strategy T by player 2, a best 
response for player 1 is strategy S, when for every 
other available strategy S’

• P1(S, T) ≥ P1(S’, T) 



Strictly best responses

� Given a choice of a strategy T by player 2, a strict best response for player 1 is strategy S, 
when for every other available strategy S’

� P1(S, T) > P1(S’, T) 



Dominant Strategies

• A dominant strategy S for Player 1 is one that is the best response to every strategy of 
Player 2.

• A strictly dominant strategy S for Player 1 is one that is the strictly best response to every 
strategy of Player 2.

• There is the assumption that players have come common knowledge of possible payoffs 
of each other, etc.
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The narrative

Predicting behaviour when  individuals interact



Predicting outcomes

� In games with strictly dominant strategies, we 
expect players to chose those strategies
� This basic assumption has been debated but it is a 

basic one in game theory

� In games without strictly dominant strategies, how 
can we predict the choices of the players? – SEE 
EQUILIBRIA



Dominant strategy for one party only

Marketing strategies of a big 
firm (1) and smaller firm (2) for 
low-priced vs. upscale product 
launch.

The behavior of the party with 
the dominant strategy can be 
predicted.

… based on that, the behavior 
of the other party can be 
predicted too.
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SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book



Example - equilibria

� Firm 1 and Firm 2 are competing for clients 
A, B and C

� Firm 1 too small, Firm 2 is large
� They need to decide which client to 

approach
� If they approach the same client they get 

half the client’s business each
� If Firm 1 approaches a client on its own they 

will get 0 business
� If Firm 2 approaches B or C on its own, they 

will get their full business
� A is a large client and will do business only 

with both of them and they payoff will be 
higher (4 each)

� Business with B or C is worth 2

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book



Example - equilibria

� (A, A) is the only Nash Equilibrium

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book



Nash Equilibrium

• In a game where player 1 choses strategy S and player 2 choses 
strategy T, the pair of strategies (S, T) is a Nash Equilibrium if
– S is a best response to T, and

– T is a best response to S.

• The expectation is that even when there are no dominant 
strategies, if there are Nash equilibria, players will choose the 
strategies of the equilibria

• This is based on the belief that each party will make this choice

• But how can we predict behaviour when there are more than one 
Nash Equilibria in a game?
– And they yield the same payoffs?

Is there a Nash equilibrium in the prisoner’s dilemma game?



Multiple Equilibria – Coordination games

� A Balanced Coordination Game
� What can you and your partner choose when preparing a common 

presentation? Keynote or PowerPoint?
� We assume that you cannot convert from one to the other

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book

Two Nash 
Equilibria:
(P, P) (K, K)



Multiple Equilibria: Focal Points

To predict which of the multiple equilibria players will chose one can 
argue that there can be “natural reasons” not shown in the payoff 
matrix that will create a bias for one equilibrium

• This will be a focal point
• E.g. if PowerPoint is more frequently used in the University maybe both players 

will chose this instead of Keynote

Reference: Schelling, T. (1960) A Strategy of Conflict. Harvard University Press



Multiple equilibria: “Battle of the sexes” game

� An unbalanced coordination game.

� Two equilibria but gains differ for each 
player depending on equilibrium.

� Hard to predict choice of strategies 
based on external conventions.
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Multiple equilibria: Stag hunt game

� An unbalanced coordination game.

� The party that goes for the highest 
payoff gets penalised more than the 
party that goes for lower payoff.

� Difficult to predict behavior.

� Similar to prisoner’s dilemma but what 
is the difference?
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Multiple Equilibria – Anti-coordination games

� Anti-coordination games:
� Hawk-Dove Game

� Chicken Dove strategy Hawk Strategy
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Matching Pennies

� What about games with no (pure 
strategy) Nash Equilibria?

� Two players hold a penny each 
and they decide which side to 
show to each other each time

� Player 1 looses her/his penny if they 
match

� Player 2 looses his/her penny if they 
don’t match
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Mixed Strategies

� When there are no equilibria (as in the matching pennies game) we 
can assign a probability on each strategy
� E.g. Player 1 will choose Head with a probability p

� and Tail with with probability 1-p

� Player 1 is choosing a pure strategy Head if p=1



Mixed Strategies and Equilibria

• An equilibrium with mixed strategies is one where 
probabilities of strategies for Player 1 is the best 
response to a probability of strategies by Player 2

• In the matching pennies game, we have an 
equilibrium for probability ½ for each strategy for 
each player
• In cases where payoffs are less ‘symmetric’ equilibria are 

based on unequal probabilities



Strategy Optimisation

• Pure strategies vs. Mixed strategies
– Mixed strategies can help find additional Nash 

equilibria or the only Nash equilibria

• Individual optimisation vs. group optimisation
– Dominant strategies, Nash equilibria, focal points refer 

to individual optimisation

– Pareto optimality and social optimality refer to group 
optimisation 



Pareto Optimality

• Take a choice of strategies; it is Pareto-optimal if 
there is no other choice in which all players receive 
payoffs that
– are at least as high, and

– At least one player receives a strictly higher payoff

• It could be that a unique nash equilibrium is not 
pareto-optimal; a binding agreement is required to 
ensure that a pareto-optimal set of strategies is 
chosen in that case
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Social Optimality

• A choice of strategies by the players that maximizes the sum of the 
players’ payoffs

• If a pair of strategies is socially optimal is also Pareto-optimal
• Discuss: why?

• Of, course, adding payoffs to establish social welfare has to be 
meaningful

Which pair of 
strategies here is 
socially-optimal?

SOURCE: http://www.cs.cornell.edu/home/kleinber/networks-book



Social Optimality

• Take a choice of strategies; it is Pareto-optimal if 
there is no other choice in which all players receive 
payoffs that
– are at least as high, and

– At least one player receives a strictly higher payoff

• It could be that a unique nash equilibrium is not 
pareto-optimal; a binding agreement is required to 
ensure that a pareto-optimal set of strategies is 
chosen in that case
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Multiplayer Games

• They can be used to model games with more than one players
• Nash equilibrium in a multiplayer game with players 1, …, n

• A set of strategies (S1, S2, …, Sn) in which each strategy is the best 
response to all the others

• For player i, strategy Si is a best response if for any other available 
strategy S’

i

• Pi(S1, …, Si, Si+1, …, Sn) ≥ Pi(S1, …, S’
i, Si+1, …, Sn)



Research Case

� Hawks and Doves in small-world networks

� “The role of network clustering on cooperation in 
the Hawk-Dove game”

� Assuming static network structures

� “Dovelike behaviour is advantaged if synchronous 
update is used”

SOURCE: Tomassini et al. Hawks and Doves on 
small-world networks. Physical Review E (2006) vol. 
73 (1) pp. 016132

able to propagate !having a gain exactly equal to that of their
neighboring doves". The system is thus found locked in a
configuration of a very high proportion of doves with a sig-
nificant number of isolated hawks.

If r!0, lone hawks always have a higher payoff than the
doves in their surroundings and will thus infect one of their
neighbors with its strategy. However for 0"r#0.1, once the
pair of hawks is established, their payoff is lower than the
one of any of the doves connected to either one them. Even
a dove that interacts with both hawks has an average payoff
still greater than what a hawk composing the pair receives.
Consequently, when 0"r#0.1, clusters of hawks first start
by either disappearing or reducing to single hawks, as previ-
ously explained for the r=0 case, but then these lone hawks
will become pairs of hawks. If the updates are done synchro-
nously, a pair of hawks will either vanish or reduce back to a
single hawk. One can clearly see that in the long run, hawks
will become extinct. Now if the updates are done asynchro-
nously, a pair cannot totally disappear because only one
player is updated at a time. However, this mechanism of a
pair reducing to a single hawk and turning back into a pair
again will cause the small groups of two hawks to move
across the network and “collide” with each other, forming
larger groups that reduce back to a single-pair hawk forma-
tion. Therefore, after a large number of time steps, only a
very few hawks will survive.

If we take another look at Figs. 1 and 2, we note that
when the population of players is constrained to a latticelike
structure, the proportion of doves is reduced to zero for val-
ues of the gain-to-cost ratio greater than or equal to #0.8,
whereas this not the case when the topology is a random
graph. Let us try to give a qualitative explanation of the two
different behaviors. The first thing to be pointed out is that,
in the case of the replicators dynamics, if a dove is sur-
rounded by eight hawk neighbors, it is condemned to die for
values of r! 7

9 , whatever the topology may be. However, this
does not explain why for these same values, doves no longer
exist on square lattices or small worlds but are able to sur-
vive on random graphs. If the population were mixing, r
=0.8 would induce a proportion of doves equal to 20%.
Therefore, let us suppose that at a certain time step, there is
approximately 20% of doves in our population. Furthermore,
as pointed out by Hauert and Doebeli $6%, in the Hawk-Dove
game on lattices, the doves are usually spread out and form
many small isolated patches. Thus, we will also suppose
20% of doves in the population implies that in a set of play-
ers comprising an individual and its immediate eight neigh-
bors, there are about two doves. Hence, a D-player has on
average one dove and seven hawks in its neighborhood. In
the lattice network, this pair of doves can be linked in two
different manners !see Fig. 8", having either two or four
common neighbors, thus, an average of three.

More generally, if we denote $ the clustering coefficient
of the graph and k̄ the average degree, a pair of doves will
have on average $!k̄−1" common neighbors. Let us denote x
one of the two doves composing the pair as Hx, a hawk
linked to x but not to the other dove of the pair, and Hx,y, one
that is connected to both doves. If 2

3 "r" 7
8 and, assuming

that the hawks surrounding the pair of doves are not inter-

acting with any other doves !this gives the pair of doves a
maximum chance of survival", we have

GHx
" Gx " GHx,y

,

where G% is the average payoff of player %.
Consequently, according to Eq. !1", x can infect Hx, and

Hx,y can infect x.
Let us now calculate for what values of r the probability

that x invades the site of at least one Hx is less than an Hx,y
infecting x. To do so, let us distinguish the case of the asyn-
chronous updating policy from the synchronous one.

A. Asynchronous dynamics

The probability that an Hx neighbor is chosen to be up-
dated and adopts strategy D is given by

!2"

where N is the size of the population, !!" the probability an
Hx hawk is chosen to be updated !among the N players", !!!"
the probability the chosen Hx hawk compares its payoff with
player x, and finally & is the function defined in Eq. !1".

The probability that x is chosen to be updated and is in-
fected by one of the Hx,y hawks is given by

!3"

where !!" is the probability x is chosen to be updated, !!!"
the probability it measures itself against an Hx,y neighbor,
and & the function defined by Eq. !1".

For a square lattice with a Moore neighborhood !$= 3
7 and

k̄=8", expressions !2" and !3" give us r! 46
59 &0.78, whereas

FIG. 8. !Color online" Lattice: two possible configurations.

TOMASSINI, LUTHI, AND GIACOBINI PHYSICAL REVIEW E 73, 016132 !2006"

016132-8



Two-person interaction

� Bargaining games
� E.g. Two parties A and B bargaining how to split $1

� A and B have outside options x and y respectively (options if they leave the negotiation)

� The Nash bargaining solution is that the surplus ($1 – x – y) will be split between A and B

� Perceived status makes a difference in bargaining games (see Easley and Kleinberg §12.5)

� Actual behaviour is not always ‘rational’ (see ultimatum game)



The Ultimatum Game

� Person A is given $1to split with person B.

� B can only accept or reject the split.

� If B accepts each person gets amount proposed by A.
� If B rejects no party gets anything.



The Ultimatum Game

� What is the rational approach for A?

� What is the rational approach for B?

� If A gives an ultimatum of a $0.99 vs. $0.01 split, should B accept?

� If A gives an ultimatum of a $1.00 vs. $0.00 split, should B accept?



The Ultimatum Game

� Discuss differences in behaviour of B depending on whether it is a 
human or a computer program.

� Research by Güth, Schmittberger and Schwarze show that people 
do behave differently (i.e. A offered on average 1/3 of the 
balance – in many cases A offered an even split).

� Discuss differences in behaviour of A if B is a computer program.

Werner Güth, Rolf Schmittberger, Bernd Schwarze (1982) An experimental analysis of ultimatum bargaining, Journal of Economic 
Behavior & Organization, Volume 3, Issue 4, Pages 367-388, ISSN 0167-2681, https://doi.org/10.1016/0167-2681(82)90011-7.



Predicting behaviour with Game Theory

• Are there (strictly) dominant strategies?

• Or any (pure) Nash equilibria?

• If there are many Nash equilibria can we predict which 
one will be achieved based on higher payoffs or focal 
points?

• What are Nash equilibria for mixed strategies?

• Are there focal points or other conventions?

• Are there pareto-optimal pairs of strategies?
– Are Nash equilibria among them? A binding agreement 

would be required if not.

• Is there a socially-optimal pair of strategies?



Lessons learned

• Understanding of the main concepts of Game Theory. 
Given a payoff matrix be able to identify and explain 
best responses, dominant strategies, equilibria, focal 
points, pareto optimality, social optimality.

• Ability to explain how and under what circumstances 
Game Theory can help predict behaviour.

• Home study material: Sections 6.1-6.9 from the Easley 
and Kleinberg book.

• Easley, D. and Kleinberg, J. Networks Crowds and Markets. Cambridge University 
Press, 2010. http://www.cs.cornell.edu/home/kleinber/networks-book (chapters 6 
and 7)

http://www.cs.cornell.edu/home/kleinber/networks-book

