# Large scale structure of metric spaces

Jacek Brodzki

University of Southampton

## Simple shapes









# How many dimensions?



# How many dimensions?



## How many dimensions?



## Metric spaces

#### Definition

Let X be a non-empty set. A metric (or a distance function) on X is a map  $d: X \times X \to \mathbb{R}$  which satisfied the following properties:

- d is positive definite: for every  $x, y \in X$ ,  $d(x, y) \ge 0$  and d(x, y) = 0 if and only if x = y.
- ② d is symmetric: for every  $x, y \in X$ , d(x, y) = d(y, x).
- **3** d satisfies the *triangle inequality*: for every  $x, y, z \in X$

$$d(x,z) \le d(x,y) + d(y,z)$$



## Examples of metrics on $\mathbb{R}^n$

The Euclidean metric For  $x = (x_1, ..., x_n)$  and  $y = (y_1, ..., y_n)$  in  $\mathbb{R}^n$  we define

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

The taxi-cab metric, or the  $\ell^1$ -metric:

$$d_1(x,y) = |x_1 - y_1| + \dots + |x_n + y_n|$$

The supremum metric:

$$d_{\infty}(x,y) = \max\{|x_1 - y_1|, \dots, |x_n + y_n|\}$$



# Metric determines shape



## Metric determines shape



## Metric determines shape



## Analysis on sets

• Let X be a countable set. A Hilbert space canonically associated with X:

$$\ell^2(X) = \left\{ f: X \to \mathbb{C} \mid \sum_{x \in X} |f(x)|^2 < \infty \right\}$$

- Canonical orthonormal basis:  $\{\delta_x\}$ ,  $f = \sum_{x \in X} f_x \delta_x$ ,  $f_x \in \mathbb{C}$ .
- Transformations of X give rise to operators on  $\ell^2(X)$ , e.g., a bijection  $\phi: X \to X$  becomes a unitary operator

$$U_{\phi}: \sum f_x \delta_x \mapsto \sum f_x \delta_{\phi(x)}$$



## Graphs

Graphs provide natural examples of discrete metric spaces:



#### Path metric

In a graph, it is natural to define a metric between points to be the length of the *shortest* path between them:



## Large scale view

- There is no structure theory for discrete metric spaces;
- Key features of a space can be determined by studying it from a 'large distance'



#### Metrics and function: Network of resistors



#### Metrics and function

A distance between two points can be defined by measuring voltage drop resulting from passing 1 amp of current between them.



## Greedy routing

The problem of finding the most efficient route between two points depends on the function of the network.

Picture from physorg.com



## Topology of data



From: Annals of Statistics, Vol. 13, No. 2 June, 1985

## Mathematics for digital economy



## Example: Renormalisation

The essence of the topological approach is to find the essential core of the system.









Subgraphs consisting of vertices of valency at least: 1,2,3,4.

#### Basic tools

#### Definition

Let  $(X, d_X)$  and  $(Y, d_Y)$  be metric spaces. A map  $\phi: X \to Y$  is called *distance-preserving* if, and only if,

$$d_Y(\phi(x), \phi(y)) = d_X(x, y)$$
 for all  $x, y \in X$ .

An *isometry* is a distance-preserving *bijection* between two metric spaces.

#### Example

 $\phi: \mathbb{R}^2 \to \mathbb{C}$  by  $(a, b) \mapsto a + bi$ . This is an isometry if  $\mathbb{R}^2$  is equipped with the euclidean metric.



## Coarse maps

#### Definition

A map  $f: X \to Y$  of metric spaces is *coarse* if there exist two functions  $\rho_{\pm}: \mathbb{R} \to \mathbb{R}$ ,  $\rho_{\pm}(r) \to \infty$  as  $r \to \infty$  such that for all  $x, y \in X$ 

$$\rho_{-}(d_X(x,y)) \le d_Y(f(x),f(y)) \le \rho_{+}(d_X(x,y))$$

Coarse maps have a controlled amount of distortion. Maps into spaces of known geometry (e.g., Hilbert spaces) are particularly useful.

The three metrics  $d_{\infty}, d_1, d_2$  on  $\mathbb{R}^n$  are coarsely equivalent but not isometric.