
Rules
Dr Nicholas Gibbins
nmg@ecs.soton.ac.uk
32/3019

•  Semantic Web concentrates on declarative forms of
knowledge representation
•  OWL, RDF Schema

•  Rules are a common form of knowledge representation
elsewhere in Knowledge Engineering
•  Expert Systems – CLIPS, JESS, etc

The Role of Rules

•  The KR formalisms of the Semantic Web have expressive
limitations which can be overcome by rule-based
knowledge

•  For example, we cannot express the fact that a person’s
parent’s brother is the person’s uncle in either RDFS or
OWL (including OWL Full)
•  No role composition in OWL 1.0

The Role of Rules

•  Trivial to express in a language like Prolog:
•  hasUncle(X,Y) :- hasParent(X,Z),

 hasBrother(Z,Y).

hasBrother(X,Y) :- isMale(Y),
 hasParent(X,Z),
 hasParent(Y,Z).

The Role of Rules

Rules

XML + Namespaces

URI Unicode

Si
gn

at
u

re

E
n

cr
yp

ti
on

RDF

RDF Schema

OWL

Identity

Standard syntax

Metadata

Ontologies +
Inference

Explanation

Attribution

SPARQL
(queries)

Proof

Trust

User Interface and Applications

The Semantic Web layer cake

•  Several proposed rule languages for use with the SW
•  RuleML
•  (N3 Rules)
•  (Jena Rules)
•  Semantic Web Rule Language (SWRL)
•  Rule Interchange Format (RIF)

Rules and the Semantic Web

•  The majority of rules in rule-based systems are of the form:

A ⇐ B1 ∧ B2 ∧ … ∧ Bn

•  A is known as the consequent or head of the rule
•  B1…Bn are known as the antecedents or body of the rule

•  Also known as Horn Clauses (disjunction with at most one
positive literal)

Rule Format

•  Some work on designing DLs which include trigger rules of
the form:

C ⇒D

(if an individual is a member of C, then it must be a
member of D

Description Logics and Rules

•  C ⇒D is not the same as saying C ⊑ D
(every instance of C is an instance of D)

•  C ⊑ D is equivalent to saying ¬D ⊑ ¬C (contrapositive)
•  The trigger rule C ⇒D is not equivalent to ¬D ⇒ ¬C
•  DLs with rules include an epistemic (modal) operator K:
•  KC can be read as “the class of things which are known to be of class

C”
•  C ⇒D is equivalent to KC ⊑ D
•  Used as a foundation for SWRL, etc

Description Logics and Rules

•  Defines log: namespace for logical operators

•  Not widely implemented (cwm + ?)

•  log: namespace puts ontology into OWL Full

 {?x ont:parent ?y. ?y ont:brother ?z. } log:implies {?x ont:uncle ?z. }.

N3 Rules

•  Jena RDF/OWL library contains support for forward- and
backward-chaining rules:
 # Example rule file
@prefix ont: <http://example.org/ontology#>.
@include <RDFS>.

[rule1: (?f ont:parent ?a) (?u ont:brother ?f) -> (?u ont:uncle ?a)]

•  Only implemented in Jena

Jena Rules

•  Submitted to W3C in 2004
•  Based on RuleML subset and OWL
•  XML and RDF-based serialisations

(also, human-readable abstract syntax)
•  Obeys constraints put on OWL re: disjointness of instances

and datatype values
•  Two types of variable in expressions
•  I-variable – matches class instances
•  D-variable – matches datatype values

SWRL

 hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒ hasUncle(?x1,?x3)

•  In abstract syntax:

 Implies(Antecedent(hasParent(I-variable(x1) I-variable(x2))
 hasBrother(I-variable(x2) I-variable(x3)))
 Consequent(hasUncle(I-variable(x1) I-variable(x3))))

SWRL Rule Example

 Artist(?x) ∧ artistStyle(?x,?y) ∧ Style(?y) ∧ creator(?z,?x) ⇒
 style/period(?z,?y)

 Implies(Antecedent(Artist(I-variable(x))
 artistStyle(I-variable(x) I-variable(y))
 Style(I-variable(y))
 creator(I-variable(z) I-variable(x)))
 Consequent(style/period(I-variable(z) I-variable(y))))

SWRL Rule Example

 Artist(?x) ∧ (≤1 artistStyle)(?x) ∧ creator(?z,?x) ⇒
 (≤1 style/period)(?z)

 Implies(Antecedent(Artist(I-variable(x))
 (restriction(artistStyle maxCardinality(1)))
 (I-variable(x))
 Style(I-variable(y))
 creator(I-variable(z) I-variable(x)))
 Consequent((restriction(style/period maxCardinality(1))
 (I-variable(z))))

SWRL Rule Example

•  Based on OWL XML Presentation Syntax (with RuleML)
 <ruleml:imp>

 <ruleml:_rlab ruleml:href="#example1"/>
 <ruleml:_body>
 <swrlx:individualPropertyAtom swrlx:property="hasParent">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="hasBrother">
 <ruleml:var>x2</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:individualPropertyAtom swrlx:property="hasUncle">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>

</ruleml:imp>

SWRL XML Syntax

 <swrl:Variable rdf:ID="x1"/>
<swrl:Variable rdf:ID="x2"/>
<swrl:Variable rdf:ID="x3"/>
<ruleml:Imp>

 <ruleml:body rdf:parseType="Collection”>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="⪚hasParent"/>
 <swrl:argument1 rdf:resource="#x1" />
 <swrl:argument2 rdf:resource="#x2" />
 </swrl:IndividualPropertyAtom>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="⪚hasSibling"/>
 <swrl:argument1 rdf:resource="#x2" />
 <swrl:argument2 rdf:resource="#x3" />
 </swrl:IndividualPropertyAtom>
 </ruleml:body>
 …

SWRL RDF Syntax

•  W3C Working Group chartered in late 2005
•  More expressive language than SWRL
•  Common core with extensions

•  Two phases of standardisation:
1.  Core language (due May 2007)
2.  Standard extensions (due June 2008, June 2009)

•  Some delays in first phase
•  Basic Logic Dialect still at Working Draft (July 2008)
•  Next release due May 2009 (mostly LC and CR)

Rule Interchange Format

•  Defines XML syntax and non-XML presentation syntax (c.f.
OWL)

•  Latest version from:
http://www.w3.org/2005/rules/wiki/RIF_Working_Group

Rule Interchange Format

Document(
Prefix(cpt http://example.com/concepts#)
Prefix(ppl http://example.com/people#)
Prefix(bks http://example.com/books#)
Group (

 Forall ?Buyer ?Item ?Seller (
 cpt:buy(?Buyer ?Item ?Seller) :-
 cpt:sell(?Seller ?Item ?Buyer)
)
 cpt:sell(ppl:John bks:LeRif ppl:Mary)

)
)

RIF Presentation Syntax

