ELEC6021 Research Methods
Matlab Session 2

In the first session, we looked at how to write our own Matlab functions,
among other things. This session poses a number of problems and asks you
to write Matlab functions to solve them. However, before we attempt those
exercises, let’s remind ourselves about writing and running Matlab functions.

Writing and running functions

Let’s start by writing a Matlab function to perform the mathematical func-
tion f(z) = x?. Use the Matlab text editor to create a new M-file and type
the following commands into it.

function y=my_function(x)
y=x"2;

Save your M-file as my_function.m. You can run your function by typing
the following command in the main command window.

my_function(3)

Matlab should display a value of 9, which is f(3) = 3%

Function handles

The name of your function can be assigned to a string variable using the
command

f="my_function’;

This string variable is referred to as a function handle. The built-in Matlab
function feval can be used to evaluate the function specified by a function
handle. You can try this using the command

feval(f,4)

This time, Matlab should display a value of 16, which is f(4) = 4%

The feval function is usually used inside functions that take function
handles as arguments. An example of such a function is fplot. You can get
this to plot your function using the following command.

fplot (£, [0 4])

Here, the argument [0 4] tells fplot to plot the function for inputs in the
range 0 to 4.

Note that using a function handle and the fplot function has saved us
a lot of effort. The commands required to generate the same plot without
using a function handle are as follows.

x=0:0.08:4;

for index=1:length(x)
y(index)=my_function(x(index)) ;

end

plot(x,y);

For further information on feval and fplot, type the following commands
at the main command window.

help feval
help fplot

Exercise 1 Random integer generators

In this exercise we shall consider some random integer generators. Different
random integer generators may output different integers with different prob-
abilities. For example, a six-sided dice is a random integer generator that
outputs the integers 1 to 6, each with a probability of 1/6. The probability
of a six-sided dice outputting any integer outside the range 1 to 6 is zero.
By contrast, a ten-sided dice is a different random integer generator that
outputs the integers 1 to 10, each with a probability of 1/10.

Some random integer generators may output different integers with differ-
ent probabilities. For example, the act of rolling two six-sided dice, dividing
the results by two, rounding up to the nearest integers and summing the
two resultant integers together can be considered to be a random integer
generator. This outputs the integers 2 and 6, each with a probability of 1/9,
the integers 3 and 5, each with a probability of 2/9 and the integer 4 with a
probability of 3/9.

You can write a Matlab function that will output the probability P(s, k)
of an s-sided dice outputting the integer k as follows

% Function that determines the probability p of an s-sided dice
% outputting the integer k
function p=uniform_dist(s,k)
% Check that the inputs are integers and in the correct range
if round(k) ~= k
error (’k should be an integer!’);
end
if round(s) ~= s
error(’s should be an integer!’);

end
if s <1

error(’s should be positive!’);
end

% Calculate the integer probability
if k >=1 && k <= s

p=1/s;
else

p=0;

Note that this function will generate an error if either s or k is not an integer
or if s has a value less than 1. It is always a good idea to include some
error checking in your functions so that they only ever return meaningful
values. This function also includes some comments. In general, comments
are invaluable when you want to share your code with a friend; without any
comments, your friend would have no idea what your Matlab code does!

The function listed above is called uniform_dist, since it describes a
discrete uniform probability distribution, in which

1/s if1<k<s

P(s, k) = { 0 otherwise (1)
where s > 1 and k are integers.

Your first task is to write similar functions for the discrete geometric and
zeta probability distributions, remembering to include some error checking.
In the discrete geometric distribution

(s—1sF ifk>1

P(s, k) = { 0 otherwise (2)

where k is an integer and s > 1 is a real-valued parameter of the distribution,
similar to in the discrete uniform distribution described above. Meanwhile,
the discrete zeta distribution is defined by

B it k> 1

P(s, k) :{) (3)

0 otherwise

where the zeta function (is implemented by Matlab’s built-in function zeta,
k is an integer and s > 1 is real-valued.

The following function determines the sum of the probabilities of the
integers in the vector k_values, when using the probability distribution that
is specified using the function handle P and a particular value of s.

% Function that determines the sum of the probabilities of the
% integers in the vector k_values, when using the probability
% distribution that is specified using the function handle P
% and the parameter s.
function sum = sum_P(P,s,k_values)
% Initialise the sum to zero
sum = O;
% Accumulate the probabilities of the various integers
for index = 1:length(k_values)
sum = sum + feval(P,s,k_values(index));
end

For each of your probability distributions and for a range of values for s > 1,
use the sum_P function to verify that no matter what vector of k_values you
use, the sum of the probabilities is never greater than 1. This demonstrates
that our probability distributions are valid.

The following function generates random integers using the probability
distribution that is specified using the function handle P and a particular
value of s.

% Function that generates random integers using the

% probability distribution that is specified using the

% function handle P and a the parameter s.

function k = random(P,s)

% Generate a random number in the range O to 1, taken from a
% continuous uniform distribution

a = rand;

% Initialise the integer

k=1;

% Find the integer value having the probability that matches
% the random number
while a > feval(P,s,k)
a=a - feval(P,s,k);
k=k+ 1;
end

Your next task is to figure out how this works. To help you out with this,
Figure 1 provides a flow chart for the random function. Try generating a
bunch of random integers using each of your probability distribution func-
tions. Note that to start with, s = 2 is a good choice for the parameter
values of the discrete geometric and zeta distributions. See what happens to
the random integers generated by these distributions as you use larger and
larger values for s.

P and s

a«— U(0,1)
k—1

no

yes

a <« a— P(s k)
kE—k+1

Figure 1: Flow diagram for the random function. Here, U(0,1) generates a
random real value from a continuous uniform distribution over the range 0
to 1.

It is easier to understand what is happening to the random integers as
s changes by plotting P(s, k) versus k. Your final task in this exercise is to
write a Matlab function that has a similar functionality to fplot, but which
is specifically designed to plot P(s, k) versus k for a specified probability

distribution and value of s. The first line of your function should therefore
be

function plot_distribution(P,s,k_values)

where P is a function handle and k_values is a vector that specifies which
values of k to use. You may find that drawing a flow diagram makes it easier
to work out what loops are required. To help you out with this exercise, the
output you should get for plot_distribution(’geometric_dist’,2,1:10)
is exemplified in Figure 2. Try to get your function to automatically generate
plots that look like Figure 2, without having to manually insert titles and
axis labels in the plot window.

geometric_dist s=2
0.5¢ T T

0.45F i

0.4 b

0.35F b

0.3fF b

P(k,s)
o
N
(&)

T
©
I

0.2 i

0.15F b

0.1F b

0.05F

Figure 2: Discrete geometric probability distribution for s = 2.

Use your plot_distribution function to see how the probability distri-
butions change as you vary the value of s. You should find that this explains
the observations you made about the random integers generated by the dis-
crete geometric and zeta distributions, when you used larger and larger values
of s.

Finally, you may like to write a Matlab script that repeatedly calls the
random function and collects statistics about how many times each integer
value is generated. You can then compare these statistics with the probabil-
ities shown in the plots generated using your plot_distribution function.
In this way, you can verify that the random function generates each integer
value with the correct probability.

Exercise 2 Sudoku checker

A sudoku puzzle consists of a 9x 9 grid of numbers, most of which are initially
unknown to the player. The objective is to fill in the missing numbers by
exploiting the following three rules:

e cach of the integers in the range 1 to 9 must appear in each row of the
grid exactly once;

e cach of the integers in the range 1 to 9 must appear in each column of
the grid exactly once;

e cach of the integers in the range 1 to 9 must appear in each 3 x 3 box
in the grid exactly once.

An example of a sudoku puzzle is shown in Figure 3.

(a

Na2
—

o
=

9|3 7 01314]16[7(8]19[1]2
6 11915 6[7(211(9(513(4]|8
918 6 119/8131412]516]7
8 6 3 815]9]17(6[1]4[2]3
4 8 3 1 4(2(6]18[5(317]9]1
7 2 6 71113]9[2(4]18[516
6 218 916[115[3[7]12[8]4
411(9] 218|7)4[1[9]16([3]5

8 719 314(512(8[601]{7]9

Figure 3: (a) A sudoku puzzle and (b) its solution.

Your task in this exercise is to write a Matlab function that checks
whether or not a sudoku solution adheres to the three rules listed above.
The first line of your function should be

function valid = check_sudoku(solution)

where solution is expected to be a 9 x 9 matrix of integers and valid is
given a value of 1 when the solution adheres to the above-listed rules and a
value of 0 otherwise.

Remember to include comments and some error checking in your function.
This should check that solution is a 9 X 9 matrix of integers in the range
1 to 9. You should also try to make your function as elegant and efficient
as possible. You may find that Matlab’s built-in function unique is useful
in this exercise. You can find out how to use this by using Matlab’s help
facility.

Once you have written your function, test its functionality using the data
files that can be downloaded from

http://www.ecs.soton.ac.uk/notes/elec6021/matlab/sudoku

You can perform the tests by saving the data files to your Matlab working
directory and using commands like the following ones.

load solutionl.dat
check_sudoku(solutionl)

Note that some of the data files will test the error handling of your function.

Exercise 3 - Plotting elevation data

Southampton is surrounded by many great places to visit. These include
Bournemouth, the New Forest, Salisbury, Winchester, Portsmouth and the
Isle of Wight. Some of these are shown in the satellite imagery of Figure 4. In
this exercise, we will use Matlab to plot the elevation of the area surrounding
Southampton.

The elevation data for the area surrounding Southampton is stored in the
file elevation.dat, which can be downloaded from

http://www.ecs.soton.ac.uk/notes/elec6021/matlab/elevation

This text file can be loaded into Matlab using the load command, like in
Exercise 2. The resultant matrix elevation contains the elevations (in me-
tres above sea-level) of positions arranged in a grid at intervals of 75 m, over
an area of 50 km by 50 km.

We need two vectors to describe the co-ordinates of the data points: one
for the East-West co-ordinates and one for the North-South co-ordinates.
The length of the East-West vector should be equal to the number of columns
in the elevation matrix. You can therefore obtain this vector using the
command

Figure 4: Satellite imagery of Southampton, Portsmouth, the New Forest, the
Solent and the Isle of Wight. The label ‘A’ indicates the Highfield Campus
at the University of Southampton. (©)Google 2009.

x = (0:size(elevation,2)-1)*75;

where 75 is used because the elevations are recorded for positions that are
spaced 75 m apart. Use Matlab’s help command if you're not sure what
the extra argument for the size function is for. Similarly, the length of the
North-South vector should be equal to the number of rows in the elevation
matrix. Adjust the argument of the size function in the command above to
obtain the North-South vector y.

You can generate a 3D surface plot of the elevation data using the com-
mand

surf (x,y,elevation,’LineStyle’, ’none’);

Here, ’LineStyle’, ’none’ is used to remove the grid that would otherwise
be drawn over the surface plot, obscuring the colours from view.

You can give appropriate lengths to the three axes of the plot by using
the commands

x1im([0,max(x)])
ylim([0,max(y)])
z1im([-1000,1000])
axis square

You can use the ‘Rotate 3D’ tool in the plot window to view it from different
angles. Note that in order to make the plot more exciting, the commands I
provided above make the hills look like mountains! You can obtain a more
realistic view by typing the command

axis equal

I think you’ll agree though that this makes the plot look too boring! You
can undo this by typing the following command again.

axis square
You can find out more about the axis command by typing
help axis

Remember that it is always important to annotate the axes of your plots
and to include the units. You can do this using the commands

xlabel(’Easting (m)’)
ylabel (’Northing (m)’)
zlabel (’Elevation (m)’)

If you like, you can also include a key to explain the various colours by using
the colorbar command.

Next, let’s draw a contour plot for the elevation data. You can do this
using the command

contourf (x,y,elevation)

Remember to set the lengths of the axes and to annotate them, as described
above.

Next, we can merge the elevation data with the satellite imagery of Fig-
ure 4 to generate a 3D representation of the area surrounding Southampton.
Start by downloading the JPEG satellite.jpg from the URL provided
above. You can load this into Matlab using the command

satellite = imread(’satellite.jpg’);
You can display the image by typing the command
imshow(satellite)

Notice that the image shows the exact same area as the elevation data; this
took quite a lot of trial and error to get right!

You can merge the satellite imagery and the elevation data by using the
command

10

warp(x,y,flipud(elevation),satellite)

This command maps an image onto a surface plot. Here, the f1ipud function
is required because the rows of an image are numbered from top to bottom,
not from bottom to top like the y axis of a plot. You can find out more about
the flipud command using Matlab’s help function. Again. remember to
set the lengths of the axes and to annotate them, as described above.

Try using the ‘Zoom In’ and ‘Rotate 3D’ tools in the plot window to
see what the Isle of Wight looks like when you’re stood at the top of the
tallest building on the Highfield Campus at the University of Southampton.
Alternatively, you can change the viewing angle using the command

view(az,el)

where az is the azimuth in the range 0 to 360 degrees and el is the elevation
in the range 0 to 90 degrees. Also, you can zoom in using the command

zoom(2)
and zoom out using the command
zoom(0.5)

Finally, you can draw the contours into the same plot by using the com-
mands

hold on
contour3(x,y,flipud(elevation))

Again, you may like to include a key by typing the colorbar command.
Pretty neat, huh?

Exercise 4 - Sorting

In this exercise, your task is to write a Matlab function that will sort the ele-
ments of a vector into ascending order. There are lots of different algorithms
that will achieve this and many are described on Wikipedia at

http://en.wikipedia.org/wiki/Sorting_algorithm

Feel free to pick whichever algorithm you like, but notice that different algo-
rithms have different speeds, memory requirements and algorithmic complex-
ities. You should draw a flowchart for your algorithm to help you visualise
its operation.

The first line of your function should be

11

function out = my_sort(in)

where in is expected to be a vector and out should contain the same elements

as in, but sorted into ascending order. Try to make your function as elegant

and efficient as possible and remember to include some useful comments.
You can check that your algorithm works by using the Matlab command

issorted(my_sort(rand(1,10000)))

which will use your algorithm to sort a vector of 10000 random numbers and
return a 1 if it is successful or a 0 if not.
You can test the efficiency of your algorithm using the command

tic; my_sort(rand(1,10000)); toc

This will tell you how long it takes for your algorithm to sort a vector of
10000 random numbers. You may like to compare this to the efficiency of
Matlab’s built-in sort function by using the command

tic; sort(rand(1,10000)); toc
You can find out about the tic and toc commands by using the commands

help tic
help toc

Rob Maunder
rm@ecs.soton.ac.uk
September 2009

12

