FOURIER SERIES

We consider trigonometrical series which have period 27. Consider the series

o0

G0+ > (ay cos nx + by, sin nx)

n=1

and suppose it converges uniformly with respect to z in [—7, 7] with sum
f(z), which will be continuous in [—77], and periodic - 2. Then

T 1 T 0 T
/ flx)de = 500 / de + > / (@, cosnx + b, sinnx) dr = Tag
-7 -7 ne1’—T

T 1 T
/ f(z)cosmaxdr = §a0/ cos mx dax

—T —T

0 T
+> / (an cosnx + a, sin nx) cos mx dz
—T

m
= am/ cos® max dxr = mwa,,

—Tr

Similarly 7 f(x)sinmx dx = 7b,,
Hence

Ay, = 1/7r f(f)cosmzdx m=0,1,... (1)

by, = —/ x)sinmxdr m=1,2,... (2)

We can write the coefficients in the form

a, + ib, = f()”””dx n=12...

Now suppose f(z) € E(—7r7r) and is periodic - 27 define constants a,,, b, by
the relations (1), (2) above (Euler, Fourier formulae)
This gives rise to the series

1 o
S0+ > (an cosnz + b, sinnz) ~ f(x)
n=1

called the Fourier Series of f(z).
If f is an even function b,, = 0 a,, =
If f is an odd function a,, =0 b,, =

) cos mzx dx
sinmx dx

o fla
o f(@)



Problem 1 Suppose f continuous and periodic and periodic -27 and f(z) ~
%ao + >, (a, cosnx + b, sin nzx).

Suppose the Fourier Series converges to ¢(z) uniformly in [—7 7]. Is it
true the f(z) = ¢(x)?

By the definition of the coefficients, we get

/7r f(x)eimda::/7r p(x)e™ dr n=0,1,2,...

where f and ¢ are continuous.
Does it follow that f(z) = ¢(z) for all 27

Problem 2 Can 2 different continuous functions, periodic - 27 have the
same Fourier Series.

Problem 3 Is the Fourier Series of a continuous periodic function conver-
gent?

Theorem 1 Riemann Lebesgue If f € £(a b) then [° f(z)e* dz — 0 as
A — 00.

Proof We first prove the result for f continuous. Define, without loss of
generality, f(z) = f(b) x > b, f(z) = f(a) < a then f is continuous
everywhere.

I = /bf(x) ey

:_/f ez

b+%
= — | T fit- X)emdt

a—i-)\
a+% .
— _/ ( _) Mtdt_’_/ A _g)ez)\tdt
b+%
_/ ( _) At dt

- Il+[2 Ig

Therefore



™

-5

[ =1 (e=5)}eaa < [

— 0 as A — oo by uniform continuity of f.

a+Z%
Li< [
a

provided § < b — a therefore I, — 0 as A — oo.

f(t—g)‘dx<zMM: sup f(z) < oo

A a<z<b

Sum I3 — 0 as A — oo
Therefore I — 0 as A — oo.

Now if f € L(ab) and € > 0 is given, there is a function ¢(z) = ¢.(z),
continuous in [a b] such that [*|f(z) — ¢(x)| dx < . Therefore

/abf<q;)@i)\ﬂc der = /abgb(l’)em n /ab{f(x) — ()} e d
= L+

|I5] < e forall A |[;| < e XA > Ao by the first part of the proof. Hence
the result.

Corollary 1 Ifa < a’ <V < bthen f;’/l f(x)e® dx — 0 as A — oo uniformly
ina

Corollary 2

1 ’
@n+ibn:—/ f(z)e?* dr — 0 as n — oo.
7r

—T

This result may be proved in a more elementary way if f is continuous
as follows.

m(a, +ib,) = /7r f(z)e™ dx



L)

by periodicity of integrand.
Therefore 27 (a, + ib,) = /7r {f(x) —f (a: _ 7T> } .
—r n

therefore |27 (a, +ib,)| < /7T flx)—=f <$ - n>’ dx

—T

— 0 as n — oo by uniform continuity of the integrand.
Convergence of Fourier Series at t = 2 Suppose f(t) € L(—n 7) and is

periodic - 2 and suppose f(t) ~ sag + X2 (a, cos nt + b, sin nt)

n

1
Sp = Sp(x) = Sp(x; f) = 5% + Z a, cosvr + b, sinvr

= / t)dt + Z cnrr / f(t) cosvtdt
2 ™ -7
+ Z sin v / f(t)sinvtdt
s —T

_ - / { cosuxcosut+sinyxsinut)} dt
_ _/ f(t){—Zcosu(t—x)} dt
).

(Dirichlet’s Integral)

S1n n+l U
= —/ [z 4 u) <.—12)du
2S1Il§u
1 7 sin(n—i—%)u
= — — =
W/_ﬂf(:z;—ku) 2Sin%u Y
sin(n—i—%)u

1 n —
The sum 5 +3 7 cosvu =

= D, (u) is called Dirichlet’s Kernel.

1
2 sin U

™

[ s Dy du= = [T )+ F )} Dyfu) du

mwJ—7



We have at t =z

F) = faotu) = UGt + fa—u)} + {4 ) — fr—u)}

¢, =even part of f(t) with respect to t = x
1, =odd part of f(t) with respect to y = .
Dirichlet’s integral becomes 2 [ ¢, (t) D, (t) dt.

Theorem 2 The convergence of a Fourier series is a ‘local’ property of the
function when f(t) € £L(—n, ) and is periodic - 27.

Proof Let 0 <d <7

™

7Su(x) = / Fla+1)Do(t) dt

—T

-6 6
= / +/6+|mt§:11+[2+13

" fla+u) 1
_[3 = 5 m Sln(n —|— §)u du

— 0 by Riemann Lebesgue theorem as n — oo since g ilx:f L)L € L(om)
2

Similarly I; — 0 as n — oo.

Hence the convergence of the Fourier series at ¢ = x depends only on
the behaviour of f in an arbitrarily small interval about ¢ = .

Theorem 3 If f € L(—n m) and is periodic - 27w, and a < b, then the
uniform convergence of the Fourier Series in [a b] depends only on the
function in any interval (a — d,a + &) ¢ > 0.

Proof Suppose a <z <band >0

TSu(z) = /” Fla+ 1) Dy(t) dt

—Tr

_ /Hm FOD(t — x)dt

—nmt+x
r—0 T+ T4+7

= / +/ +/ =L+ 1+ 13
T+ z—0 T+
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z+m sin (n + 1) (t —x)
t
/ac+5 2sin 1(t — )

1

. 1
= m $+5f<)sm<n+§) (t —z)dt 2nd MVT

cos(n—|—§ T < ] 1
= —/ 6f(t)s1n(n+§)tdt
T+

dt

2sin%5
sin (n—i—%)x ¢ 1
— t — | tdt
2sin 10 /H(sf()cos <n+2>

a<a+di<zr4+i<(<z+n<b+n7
‘cos(n—i—%)x‘ <1 ’sin(n—{—%)aj‘ <1
Therefore I3 — 0 uniformly with respect to z as n — oo by Riemann

Lebesgue theorem. Similarly /1 — 0 uniformly with respect to x as
n — oo.

hence the uniform convergence depends only on the behaviour of f in
(x—=6,z+6)a<z<bie in (a—3Jb+9).

_ %/Ow%(t)p () dt

s - const is even therefore S = 2 [ 5D, (t) dt therefore

Note

=2 [M{out) - 51D, (0

Theorem 4 Dimi’s Test If f € £(—n 7) and is periodic - 27 and ifEIS|M €
L(0 6) § > 0 then the Fourier series of f converges to S at t = .

Proof
Sn() =) = [ (@ut) ~ S)D, (1) d

= 7Tw_tssin(n%—%%fdt

0 25111%
¢x(t) -5 _ ¢x(t) -5 t
2sin 1t t 2sin it
If g(() = =t o < t < 7, and g(0) = 1 then g is continuous in

2sin %t

[0 7] Therefore 2975 ¢ £(0,6) and also 2875 ¢ £(§ 7) therefore

2sin 1¢ 2s

WS 0, 7).

2sin 1 5t



So by Riemann-Lebesgue Theorem 7(S,(z) —S) — 0 asn — oo ie.
Sp(z) — S as n — oo.

Corollary I If f(t) € L(—n 7) and is periodic - 27 and if f(¢) is differen-
tiable at ¢ = z, then the Fourier series converges to f(x) at t = z.

Proof
Ga(t) — flx) _ fla+1t) = f(2) N flz—1t) = f(z)

t 2t 2t

— %f’(x) — %f’(l’) =0 as t — 0 therefore 3§ > 0|
t < 4 therefore M € L£(0,0).

Therefore by Dimi’s test the Fourier series converges to f(z).

6 (1)=f(z)
@] 10 <

Corollary IT Lipschitz Condition f(¢) € £L(—7 7) and periodic - 27 and
flz+t)— f(x) = Ot|* for some a # 0 as t — 0 then the Fourier series
converges to f(z) at t = x.

Proof
|62(u) = f(2)] < K|U[*
therefore |gz5x(u)|U—|f(x)| < K|U|*
) _ ) e
therefore / Mdu < K/ ]U|a’1du:K(5— < 00
0 u 0 o

Hence Dimi’s condition is satisfied.

Modified forms of Dirichlet’s integral if f(t € £L(—n 7) and periodic -
27, we have

sin (n—l— %)t

2 sin %t

Sula) =5 == [(6u(t) - 5) i

1. ﬁn%t may be replaced by % with error O(1).
1 1
2sin %t t
t — 2sin 5t
2t sin %t

h(t) =



Therefore

%/Oﬂ{aﬁx(t) _ SYh(t)sin <n 4 %) tdt

— 0 as n — oo by Riemann Lebesgue Theorem.

2. We may replace sin (n + %) t by sinnt with error O(1).

1 1 1
sin <n+§>t—sinnt = 2cos <n+1>tsin1t
2 [T — 1
therefore — / M {sin (n + 5) t — sin nt} dt
T Jo

t
2sin 1t

— %/Ow{qu(t)—S} t4 .cos(n—l—i)tdt

— 0 as n — oo by Riemann-Lebesgue Theorem.

Functions of bounded variables Let f(x) be defined on [a, b].
Let Ay:a=xp<a1 <...<uz, =0band define Va = X0_, |f(z,) —
Sy
Let 0f(zy) = f(z) = f(zp-1).

Define 6 f(z,) = 1 [|0f(z,)| + 6(fz,)] = 6f(xy) if>0

0 otherwise
—0f(x,) if>0
Define 6* f(z,) = 5 [|0f(x,)| = 0(fx,)] = 0 ) otherwise

Define Px =30 ;07 f(x,), Na=>"_10" f(x,)
Then Pa + Na =Va Pa — Na = f(b) — f(a)

Define P = P?f(z) = supp Pa to be the positive variation and N =
NP f(x) = sup, Na to be the negative variation.

Py+ Ny =V, P/ =Ny = f(b) - f(a)
Define V(z) =V?* P(z) = P? N(x)= N}



Theorem 5 If f is B.V. in [a b] i.e. V.’ < oo then I functions f; and f;
both increasing and bounded |f(z) = fi(x) — fa(x) [a b]

Proof P(z) — N(x) = f(z) — f(a) therefore f(z) = f(a) + P(x) — N(x).
P(z) and N(x) are increasing and bounded. Let fi(z) = f(a) +
P(z) fo(z) = N(x).

Corollary A function of BV in [a ] is continuous p.p. in [a b].

Theorem 6 Jordan’s Condition If f(t) € £L(—n 7) and is periodic —27
and f is B.V in [x — 6,z + d] for some § > 0 then the Fourier series of
f converges at t = x to 3[f(z+) + f(z—)].

Proof f(t) B.V. in [x — §,20] = ¢.(t) B.V. in [0 J].

Sn(e) = L)+ f@)} = 2 [ {6.06) — 6.0} Du(t) de
= = [0 - 000 "t + 0(1)

as n — Q.

By Theorem 5, ¢.(t) = ¢,(t) = 6,(t), ¥,0 increasing and bounded so
that ¢,(t) — ¥,(0+) increasing and > 0 in [0 §] and — 0 as ¢t — 0+.

Therefore suppose without loss of generality that ¢,(¢) increasing and
bounded in [0 4] and ¢, () — ¢, (0+) < e for 0 <t <n < 0.

sin nt

1= [out) =000 2t
— /n+/ﬂ_11+12
il = | - o™
= {¢x(n)—¢m(o+)}‘ /C sin e dt‘ 2nd M.V.T

IN

n1 Sin U
€ / du‘
n u

< 2Me

for all n > 0 since [y ** is continuous and — 7 as z — oo and

is hence bounded by M. I, — 0 as n — oo by Riemann-Lebesgue
theorem. Hence the result.




Examples 1.
1

f(t):w

(0] f(0)=0

satisfies Jordan’s condition for t € [—§ ] but doesn’t satisfy Dimi’s
condition, since

ooty — 5 (logd) =5 1

t t ~tlogt ¢
which cannot be integrated down to the origin.
2.
|1
g(t) = |t|* sin t‘ o<a<l

satisfies Dimi’s condition

1

t) — t*sin
W =0 _ T < et e g0
t t
But not Jordan’s condition.
1
¢o(t) = t%sin ;
1 1 ¢
¢O((2n+%>ﬂ) B (2n+%)7r
1 1 ¢
¢O((2n+%>7r) (2n+%)7r

v
[\
>]\

Q
™o
S
|
=
S

— o0 as N — oo.

Theorem 7 If f(t) is B.V. [-7 7] and periodic 27 then the Fourier series
converges boundedly in [—, 7].

10



Proof We prove IM||s,(z)| < M for all n and z

Sp(x) — ¢,(04) for all z by Jordan’s test. We can suppose without
loss of generality f(t) > 0 increasing and bounded in (—7 7)

[Su(@)| = '%/f Wt — ) ‘/:Dn(t—xdt‘

< (ﬂ@%‘%(—%ﬁéfwww?+%ﬂ=M

Theorem 8 Of f(t)isB.Vin|a b0 < b—a < 27, f € L(—n ) periodic - 27
then the Fourier series converges boundedly in [a-+7,b—n] 0 < 7 < %52

Proof S, () — ¢,(0+) a <z < b by Jordan’s test.
Suppose without loss of generality that f(t) increasing and > 0 in [a b].

S, (x) = % " 10D~ ) ar

Choose 7 and suppose x € [a +1,b — 1]

1 a+2m
Sn(z) = ;/a f(t)D,(t — ) dt by periodicity

1 b 1 a+27
— —/ +—/ :Il+]2

L = 7(T /D t—x)dt’ ond M.V.T.
< & 4/ + 7T:| L for all z,n

Py
= %/anr%V(t”]?sm tt—x)]dt

Now n < ¢ — x < 2r — 1 therefore in < 1(t — ) < 7 — 17 therefore

< sse [ Oldrs oo [T IR0 de = CO)

27 2s8in 50 Jo

Hence the result.

11



Theorem 9 If f € L(—7 7) and is periodic - 27, and if f B.V.in [a bl a < b
then if f(¢) is continuous in [a b] then the Fourier series converges
uniformly to f(¢) in [a 4+ n,b — n].

Proof Suppose without loss of generality that b—a < 7, and f(t) increasing
and > 0 in [a b].
Let 0 <n < b_T“
Choose 9 such that

(i) 0<d<ny
(i) 0 < f(t2) — f(t1) < &, whenever € > 0 is given and 0 < ty — t; <
(S, t1,t9 € [CL b]

Suppose = € [a +1,b— 1)

Su() ~ f@) = = [ Dult— )r) — F)de

T J—7
1 T+T 1 r—0 T T+ T+7
TR ARy AT
T Je—m s T—T z—0 T 49
= Lh+hL+13+1
1 z+6
Il = | [0 = F@) Dt o)t
1

448
= U+ d) = f@)| [ Dt~ a)dt] < <Ky
Bl = | 50 = f@Du - 2)d
_ %[f(q;)—f(:c—é)] /gj_dpn(t—x)dt <K,
L el ()~ f@) (]
[l = ;~/a:+5 QSiné(t—x)'Sm<n+§) (t—x)dt’

— 0 uniformly with respect to x as n — oo. Hence the result.

Theorem 10 If f(t) € L(—n 7) and is periodic —27 and if

1 o0
f(t) ~ 540 + Y (an cosnt + b, sinn)

n=1

12



and if g(x) = 335 {f(t) - %ao} dt then g(x) is periodic 27 and >°3° %" +
Z<1>o an Sin nx;bn COS NI

converges uniformly to ¢g(z) in [—m 7.
Proof
T+27 1
glz+2m)—g@) = [ {0 sabat
T+27
= / f(t)dt — mag

™

f)dt —mag =0

Il
—

—T

1 o
glx) ~ §A0 + Z A, cosnx + B, sinnx
1
1 ™
n>1A4, = —/ g(t) cosnt dt

wJ—7
1 sinnt]™ 1 1

= — t - — t) — = innt dt
o=~ = [ (7(0) = Jao)sinn

a n

Similarly B, = +%

n

[ )~ Jaydr =0+ 3

a, . b,
— sinnx — — cosnx
—\n n

puttingz =0 C =y,

n=1 p °
Theorem 11 If
(i) f € L(—n m) and is periodic - 27
(i) [fO)|<Min(z—dzr+0)0<d<m
Then |S,(z)] < 2M logm + 22 + O(1) as m — oo.

Proof

sinnt

ZSia) = [T at+0()

- A§+Aw+ou)

:‘A+Aﬂéﬂom=h+b+&+MU

3=

13



sin nt n t<i
¢ ’ = {l ps 1
t n
5 sinnt
therefore |I;| < / | ()] ‘dt
0
1
< M/"ndt:M
0
g t
|| < /1|¢z( Smn‘dt<M/ —dt

= M(logn +logd) < Mlogn

choosing § < 1 I3 — 0 as n — oo by Riemann Lebesgue Theorem
therefore

2 2M
|Sp(x)| < —=Mlogn+ — 4+ O(1) as n — 0.
7r T

Theorem 12 (i) f(¢) € L(—n m) and is periodic - 27
(i) ¢.(0+) exists
then [S,(x)| = O(logn) as n — oo.

Proof

o=/ gzﬁx(t)SiI;nt dt + of1)

If € > 03n with o < n < 1||¢,(t) — ¢(0+)| < e in (0,7).

sin nt

(Su(e) = 6:((04) = ["[0a(t) = 62(0+)

_ /0%+/;+/;+o(1)

= Il+[2+]3+0(1)

+o(1)

ro |

As in Theorem 11 |iy] < € || < e(logn +logn) < elogn |I3] — 0 as

[Sn(X)]

Tog — 0 asn — oo.

n — oo therefore

Summability by Cesaro’s 1st mean, summability (C,1) We have the
result, due to Cauchy, that If S, — S as n — oo then S0F2tetn —, g
as n — oo.
IfS,=>"a, aﬂdlf%—a — S asn — 0o we say y.q ar
is summable (C, 1) to S.

14



If >>7°, converges it is summable (C, 1) to S, but the converse is not
necessarily true.

Examples 1. 1—1+1—1+...issummable (C,1) to 5 but is not con-

vergent.
2.
1
S, = §+COSQ+COS29+...+COSTLQO<(9<27T
o sin(n—l—%)ﬁ
" 2sin%9

1 —cos(n+1)§ 1 o1 2
(23111%0)2 n+1 _”+1(2sin%9)2

Sy+S1+...+ 5, B
n+1 N

— 0 as n — oo. Therefore 1 4 Y°° cos v is summable (C, 1) to )
for all 9|0 < 6 < 2.

But suppose sin (n + %) 0 — S ads n — oo therefore sin (n — %) 0 —
S as n — oo.

Therefore sin (n + %) 0 — sin (n — —) 0 —0asn— o0
Therefore 2 cosnf sin %(9 — 0 asn — o0o. sin %9 # 0.

Therefore cosnf — 0 as n — oo therefore cos2nf — 0 as n — oo
but cos2nf = 2cos?nf — 1 = 0 = —1 which is a contradiction
therefore %Zfﬁzl cos 6 does not converge.

Fejér’s Integral

2 T
So(z) = %/0 6u(1)D
So+...8,

therefore OnT = o,(x)
2 D D,
_ _/ O =
mJo n+1
o )
Dt =
VZ:%] z:: 2SIH1t

cosvt —cos(v + 1
5 (v + 1y
v=0 (2s1n )

15



1 —cos(n+ 1)t

2
(2 sin %)
Fejér’'s Kernel = K, (t)
Do+...+ D,

n+1
1 1—cos(n+1)t

2
n+1 (28in%t>
1 (sinm\? 1
2\ sinit ) n+1
2 T
oy = —/ o) K1) dt
™ Jo

Now if f(t) =1 for all ¢ then ¢,(t) =1 for all t, S, () =1 for all ¢ and
on(t) = 1 for all ¢ therefore

oule) =8 = 2 [((@005) Kalt) e

™ JOo

Theorem 13 Fejér’s Theorem If f € L(—n 7) and is periodic 27, and
if ¢,(0+) exists then the Fourier series of f(¢) is summable (C, 1) for
t =1z to ¢.(0+)

Proof Let £ > 0. Choose 6|0 < ¢ <, and |¢,(t) — ¢,(0+)| < 3¢ in 0, 0)

1< 2 [ 10ul) — a0l ()]
< —/thtasK(t)ZO
< /K :—fora11n>0

1 —cos(n+1)t
(n+ 1)4sin® 1t

Bl < /|@ 0:(0+)

2
< = — R
< 2 ") 300 i
_C) e
N n+1<2

if n is sufficiently large. Hence the result.

16



Corollary 1 If f(z+) and f(z—) exist, the Fourier series is summable (C, 1)
to LEt)HiG),

Corollary 2 If f(t) is continuous at z, the Fourier series is summable (C, 1)
to f(x).

Answer to Problem 1 The Fourier series converges to ¢(x) therefore the
Fourier series is summable (C, 1) to ¢(x).
But since f(t) continuous the Fourier series is summable C, 1) to f(x)

by Fejér’s theorem therefore f(x) = ¢(z).

Answer to Problem 2 The Fourier series of f(x) is summable (C,1) to
f(@).
The Fourier series of ¢(z)) is summable (C, 1) to ¢(x).
If f and ¢ have the same Fourier series f(x) = ¢(x).

Problem 4 If f(t) is continuous and its Fourier series is convergent is its

sum f(t).

Theorem 14 If f € £L(—n m) and is periodic 27 then if the Fourier series
converges at t = x, and f(t) is continuous at ¢ = x, its sum is f(z).

Proof Since the Fourier series is convergent at ¢t = z it has sum S therefore
the Fourier series is summable (C, 1) to S ate t = « therefore S = f(z).

Uniform Summability Y a,(x) is summable (C,1) uniformly in [a b] to
o(x) if

o) = So(x) +n+ i Sp(z) = o)

uniformly with respect to z in [a b] as n — oc.

Theorem 15 Localisation Property If f(4) € £(—n m) and is periodic
21 then

(i) the summability (C, 1) of the Fourier series at ¢ = = depends only
on f(t) inx —d,z+46) 6 > 0.

(ii) the uniform summability (C, 1) of the Fourier series in [a b] depends
only on f(¢)in (a —d,b+0 6 > 0.

17



Proof (i) )
ou(e) = = [" a0, () at

ForO0<d<m

_ o ™ 1 —cos(n+ 1)t
‘/5 ¢I(t)Kn(t)dt‘ = 3 /5 (1) (QSm%t)z dt
. 2
< — ol ™
_ &HOasn—H)O
n+1
(ii)
on(r) = : W@:(t)Kn(t)dt
7 Jo

= %/Oﬂf(x—kt)—i-f(x—t)Kn(t)dt
_ 1/” P+ 8K (1) dt

T J—7
1 T+

= = [ K, (t—2)dt
™ Jr—m

1 z—0 1 T+4§ 1 /J:—HS

T Jr—m T Jr—0 T Jz+o
= L+1L+1;
]_ T+
= | [ s Kt - o) di
1 1 potm 2
n+177/x+5 |f<t>’[2sinl(t—x)}2dt
2

2 1 1 T+
g [ Ifwlde
n+1lm (2 sin %5> a+0

2L Mirwia= Y o
n+17r(251n%5> — n+1

uniformly in any interval and so in the whole range. Similarly
I; — 0 uniformly in the whole range.
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Theorem 16 (Modified form of K, 1(¢)) The necessary and sufficient con-
dition for the Fourier series of f(¢) to be summed (C, 1) to S is

1 = sin%nt ?
—/((bm(t)—S) ; dt - 0asn— o0

nJo

Proof

l 1 —cosnt
n (2 sin %t)2
2 sin® $n(t)

" (2sin Lt)’
1] 7 sin int 2 sin int 2
/0 (92(8) = 5] {(%ié%t) B (%) ] dt

J = =
n
1 1
(2 sin lt)Q - t2] “

K, (t) =

< [l =]

1 1

(2 sin %t)z 2

g(t) continuous 0 < ¢ < 7 and tends to a limit as t — 0. Define ¢(0)
by continuity then ¢(¢) bounded in [0 7]

write g(t) =

1 ™ 1
1< -4 ["1out) - St =0 (-)
n Jo n
Hence the result.

The Lebesgue Set Lebesgue showed that if g(t) € L(a b) and ¢(x) =
[Zg(t)dt x € [a b] then 3¢'(x) = g(x) p.p in (a b). He then generalised
it to the following result.

Theorem 17 If f € L(a b) limy_ ; JEF(t) — aldt = | f(z) — a for all
real o, except when x belongs to a set of measure 0 (independent of
Q).

Proof For a fixed a limy_o + [Z"|f(t) — a|dt = |f(z) — o] for all 7 € [a b)

x
outside a set &, of measure zero.

Let {a,} be an enumeration of the rational numbers.
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ggh/ t) — oyl dt = (1) — a,

for all v, and all x outside § = U2, &,,.,, which is null.

Let 3 be a real number.

1f(@) = Bl = 1f (@) =] < [(f(z) = B) = (f(2) =) = [0 — |

Therefore

1 rzt+h 1 rzt+h
0= sla = [0 - aar < -

for all x outside & we have

z+h
’/ () = Bldt — 11() ﬁﬂ

z+h
< [ L o= s [0 - ol

+F/x!ﬂw—%mw+ﬂw—%m4

e

hJaz

+f () = | = [f(t) = Bl

x+h
[0 = aulde = 17(0) - agul

< B -a+ +16 = o

which may be made as small as we please, by choice first of «, and
then of h. Hence the result.

Corollary
h
/ [f(x+1) — f(2)| dt = o(h) as h — 0
0
for almost all . The set where this holds is called the Lebesgue set.

Theorem 18 (Fejér Lebesgue) If f(t) € L(—n 7) and is periodic 27 and
if ['|p.(t) — S|dt = o(h) as h — 0+ then the Fourier series of f(t) is
summable (C;1) to S at t = x.
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Proof

1 /oﬂ[%(t) ~ 8] (Sm ;nt>2 dt = o,(x) +o(1) (3)

n {

Let € > 0. 30|10 < 0 <, and

0<d(t) — /Ot () — S| du < =t in 90 5]

1 2
1 sin 5nt < n O<t§%
n| t = lae St

nt?

(3) = %{/ﬂi/;%g}

1
= ]1+]2+[3 takingn>—

1 10
Il < — [T1oult) = Szt = ==

n

|| < n/oz |¢2(t) — S|dt — 0 as n — oo by hypothesis

1 o dt
Ll < — %chx(t)—Slt—z
1 [e®)]” 2 e
- ﬁ[t—2]l+ﬁ/%—t3 “
1 1 2e [0 dt
< 200 —nd (- _/ @
- no(é) " (n>+n 142
1 2 [ dt
< = - _
__ncwy%né v
= @4-25
n

Hence the result.

Corollary
I L h|f(x+1t)— f(2)| L h|f(z—1t)— f(z)]
E/o 16, () — f ()] di < E/o : dt+5/0 ; dt

— 0 in the Lebesgue set.

Hence the Fourier series of f(¢) is summable (C,1) to f(z) in the
Lebesgue set.
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Theorem 19 The necessary and sufficient conditions for m < o,(z) < M
for all n and all z is m < f(t) < M p.p. in —7 7|

Proof (i) Necessity: Since f(t) € L(—m 7), for all z in the Lebesgue set
on(x) = f(x) as n — 0.
By hypothesis m < o,(z) < M therefore m < limo,(z) <
limo, (z) < M therefore for almost all z, lim = lim = f(x) there-
fore m < f(z) < M p.p in [—7 7].

(ii) Sufficiency:

1 7 éu(t) — M (sin 2
Un(a:)—M:—/ ¢a(t) Su.li dt
21 Jo n+1 sin 5t

Since f(t) < M p.p. in [—7 7|¢.(t) < M p.p in [0n] therefore
the integrand is < Op.p therefore the integral is < 0 therefore
on(x) < M. Similarly o,(z) > m.

Theorem 20 Uniqueness theorem for Fourier Series If f € L(—77) g €
L= W)F(t) ~ Jas+ () g(t) ~ Sao+ £() then F(£) = g(t) pp. in

(—m ).

Proof The Fourier series of f(t) is summable (C, 1) p.p. to f(¢). The Fourier
series of g(t) is summable (C, 1) to g(t).

Theorem 21 If f(t) € L(—n 7) and it’s Fourier coefficients are all zero the
f(t)=0p.pin (—7 7).

Proof From Theorem 20 with g(¢) = 0. Suppose f(t) is even and | f(t)||leq].

S, = Sn(()) = g/oﬂf(t)w dt

s ZSin%t
9 o lsin(n4 1)t
|Sn‘ < _/ Mdt
m Jo 2sin 5t
1 ifsin(n+2i)t>o0
If £(t) = yalt) = 2 in [—
F8) = X(0) {—1 it sin(n+1)e<o M7
9 r|sin(n+ 1
sn(()):f/ l(,f)ldt.
m Jo 2sin 5t
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Let anz/ﬂwdt
7 Jo 2sin 5t

We can show that |L, — %log n| < K for all n, and some K, and
L, ~ %logn as n — 00.

0 0

1 1
T 2 sin ot T 2 tan ot

9 ,n|sin(n 4 1)t — sinntcos it
0

T QSin%t
2 (7 |cosnt|] 2 71
= — < - —dt =1
7T/0 2 _7T/0 2
Now
2 7 in nt in nt
_/ ]smn1|_\smn| 0t
mJo \2tan gt t
2 (7|1 1
*/ T o1y A=
mJo |t 2tangt
2 (7 |sinnt
therefore Ln——/ |Smn‘dt’§G—|—1
7 Jo t

* sin o s
/ |smn|dt _ / 7T|smu| s
0 t 0 u

n—1

= —du

u

_ z:/7r |smu|

u+u7r

1 1 1

Vv

inudy———F— as — > >
1;)/0 S u(y+1)77 S T uton (v+1m
n—1

2

= 2

V= 0(V+1)
2n 11/+2dt
_Zz_

v=0rv+1

v

v

— logn
™
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Similarly

22/7T sin u _/7Tsin1/Jdu+/7r sin dut 2 logn
0

U+ vn U U+ m
Therefore
L, — 4 log n‘ <K
2
Hence th"(fl) < %.

Theorem 22 There is an even continuous periodic function of period 27
whose Fourier series diverges for ¢t = 0.

Proof

2 (7 sin nt
> = _
_W/O )= dt —C

Write S, = 2 [ f(t)®22 dt then S,(0) > 2S5, — C.

We shall construct F(t) so that limS,, = +oo. Consider a, > 0| 35° =
1.

Consider integers 1 <n; <ng <ng < ...
ft) =322 a,sinn,t in [0 7], even and periodic 27.

f(t) is continuous as the series converges uniformly with respect to t.

sinnt

dt

Sn = /f(t)
0
w 0 . sin nt
= /Zal,smn,,t. dt
i t

e 7 sin n,tsin nt
L S, [t
oy 0 t

2
Choose nq|apl ff #2ME > 2

sin? nlt

~Ya,

v=2

sinnqt
Sp, > 041/ E ! sinn,tdt
0 0

Choose M| ’ Jor #mt sin mit dt’ < 1 for m > M, (possible be Riemann-
Lebesgue Theorem) therefore provided ny > M;
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/W sinn,tsinnit
0

; dt’<1y:2,3,...

therefore S,,, >2 -3, a, > 1.
Choose ny > Mi|as [y S‘HQT”Qt dt > 3.

dt

T sinn,tsin nat
&%) I
0 t

T Qin?
S, > &2/ sin tht g — <Z n Z)
0

v<2 v>2

/Tf sin nqt sin nat
0

" dt‘<1asn22M1.

Choose M,|
ng > M

t

[ smn2t gin mt dt’ < 1 for m > M, therefore provided

/“ sin n,t sin not
0

; dt’<1u=3,4,...

therefore S, >3 — >, 5 a,.1 > 2.

Suppose 1 <n; < My <ny < My < ... <n, 1 <M, have all been
chosen such that S,, , > u — 1 provided n, > M,_,,

Choose n,|ay, [ szt—"“t dt > p+1

T sinn,tsinn,t
/ —— P l<lforv=1,2,...,u—1lasn, > M, 4
0

t

Choose M,| \fgf 0 myoin imd dt’ < 1 provided m > M,,.

Therefore provided n,, > M,

2

T sin“ n,,t
Sn, > oz,,/ Edt—> a,
0 t
vEN

dt

V

/7T sinn,tsinn,t
t

> p+l-1=p

Lemma 1 If fy(t) = sin (N + %)t in [0 7] even and periodic, N a positive
integer. Then

(i) S.(0)>0
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(if) Sy(0) > ZlogN —C

Proof (i)

1 Lo 1 2N+1
an:— = —
™ N+n+% N—n+% 7T(N+%)2_n2

Sn(0) increasing and > 0 in [0 N] and decreasing in [N 4+ 1 00),
also S« (0) = 0 and the function is continuous and B.V therefore

S, (0) > 0 for all n.
(ii) See problems.

Theorem 23 If ¢(n) is any decreasing sequence tending to zero as n —
oo, d a continuous even periodic function of period 27 whose Fourier
series

(i) diverges at 0
(ii) sn,(0) > logn,¥(n,) for a sequence ny < ny < . ...

Proof Let a; = % fn(t) =sin (n + %) t [0 7] even and periodic.

[0 = S ash, )

> §in (nj + %)t
+2
Jj=

© 19 wsmn tsm n, + 1)t
Snu(()) = Z__/ ] 1( 2) dt
i 281n ot
.2 1
12 T sIn” |\ N, + 5
> == —< : Q)dt
v 0 2sin 5t
11
> ——logn, —C
Ty
1 11
> %ﬁ ogn,

is v sufficiently large.

Choose n,[¢)(n,) < K5-.25 (possible as 1 — 0).
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General Trigonometrical Series

Theorem 24 Cantor’s Lemma If a,, cosnx + b, sinnz — 0 for all z in a
set I of positive measure, then a,, — 0,b, — 0 as n — oo.
Proof Suppose without loss of generality 3 C [—7 7|
Assume a2 + b2 /036 > 0 and {n, }|a? +0b2 > 9.
(@, cosn,z + by, sinn,z)?
az, + b7,

gv(x) — 0 boundedly in E for

Let g,(z) =

A, COSN,T + b, sinn,z)?
gnti()] €M Lo, AV

2
sin nnua:)

IN

Qn bn
g, ()] = | —=—===cosn,x + ————
\an, 02, V@, T 0,

= sin*(n,ox 4+, <1

Therefore [, g,(z) de — 0 as v — oo by the Dom. Cgce. Theorem.

2

/ o(z)ds = / (@p, cosn,z + by, sinn,x) s
E E

2 D)
any + bn,,
2 2 . 2 .2

B / a; cos”n,r + 2a,b, sinn,wcosn,r + by, sin”n,x Jr
- 2 2

E an + bny

1 a2 +0?

124

- = ujLC/cosQn,,xdx—l—C//SinQnul"dl’
2Jep a2 +02 E B

= L+L+1

I, I3 — 0 as n — oo by Riemann-Lebesgue theorem, therefore [ g,(x) dv —
%mE as n — oo which is a contradiction.

1 [e.9]
Theorem 25 If 500 + Y a, cosnz +bb, sin nx converges to S and if F(t) =

n=1

ZaotQ — 21: % cosnt + 3 Sin nt converges in |t — x| < 0.
F —2F F(z —
lim (x+h) (z)+ Flz—h) _ s
h—0 h?

27



Proof If 0 < h < § then we have

F(x+h) —2F(z)+ F(x — h)
12
1 2(5U+h)2—2:c2+(x—h)2
1% -
1 o
_h_Z{ {cosn(xz + h) — 2cosnx + cosn(z — h)}

+ZZ {sinn(z + h) — 2sinnx + sinn(x — h)}]

1 > sin 2nh\’
2a0+ >~ (ay, cos nx + by, sin nz) < I >

n=1
— Sash—0.

1
Corollary Riemann’s 1st Lemma If a,, — 0 and b, — 0, and if §a0 +

Z a, cosnx + by, sinnax converges to S, F(t) = Z(lot2 — Z — cosnl +
n=1 n=1 n

Fz+h) — 2F _h
— sinnt exists for all ¢ and 3 lim (z+h) (z) + f(z —h)
n h—0 h2

Generalised Derivatives I First derivative f'(z) = ,llir% fracf(x +h) — f(x)h

o f@th) — flz—h)
h—>0 2h

=S.

Symmetric 1st derivative D' f(z) =
[If 3f'(z) = D'f(x) = f'(z)]

IT Generalised 2nd derivative.

I 3f"(x) = fioy(x) = f" ()]

IIT Symmetric generalised 2nd derivative.
Do) = g L0+ D =2+ Sl = 1)
[1f 3f"(x) = D*f(x) = f"(x)]

Schwarz’s Lemma If D?F(z) = 0 in (a b) and F is continuous in [a b] =
f(z) =Az+ Bin [a b].
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Proof We prove: If D?F(z) > 0 in (a b), then

F(a)(b—2)+ F()(x — a)

F(z) < b—a)

in [a b].
F(a)(b—x)+ F(b)(z — a)
b—a
L"(x) = 0 therefore D*L(x) = 0.
Let ¢(z) = F(z) — L(x).
#(x) is continuous in [a b] and D?*¢(x) = D*F(z) > 0.
od(a) = ¢(b) =0 R.T.P. ¢p(c) <0a<c<b.

Suppose ¢(c) > 0 a < ¢ < b therefore the upper bound of ¢ in (a b) is
> ( and attained at & say.

Let g(z) = —3e(z —a)(b—2) ¢"(z) =e.
Let ¢(x) = () + g().

Y () is continuous in [a b] and

Let L(z) =

D*Y(z) = D*¢(z) + D*g(z) > .

Choose ¢|¢(c) > 0 therefore the upper bound of ¢ in (a b) is > 0 and
attained at ( say.

a<(<band () > ¢(x) x € [a b] therefore
(¢ +h) —2¢(¢) + (¢ — h)
12
therefore D?(¢) < 0 which is a contradiction.
Therefore D?F(z) > 0 in (a b)

<0

F(a)(b—x)+ F(b)(z — a)
(b—a)

= F(x) <

Therefore D*F(z) =0 in (a b)
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Theorem 26 1st uniqueness theorem for Trig. Series If a Trigonomet-

ric series —ag + Z a, cosnx + b, sin nx converges to zero for all  then
n=1
ag = a, = b, = 0.

Proof 1. Since the trigonometric series converges for all = (a, cosnz +
b,sinnz) — 0 as n — oo for all z in a set of positive measure.

2. By Cantor’s Lemma a,, — 0 b, — 0 as n — oo

1 n bn .
3. Therefore F(t) = Za0t2— ~> a—zcos nt + — sinnt converges
n

n
uniformly with respect to ¢ in any finite interval therefore F'(t) is
continuous everywhere.

4. For each z %ao +>7° a, cos nx + b, sin nx converges to zero there-
fore by Riemann’s 1st Lemma D?F(zx) exists and =0 for every
T.

5. By Schwarz’s Lemma, in an arbitrary finite interval [a b], since F'
is continuous, it follows that F'(z) is linear in (a b).

6. Since F(z) is linear in every interval [a b), F(x) in linear in

—00, 00)
" 1, Soa, b .
— Ao —Z—2(zosnx—|——281nnx:Ax+B
4 —n n
therefore
> a b, . 1
Z—gcosnx+—Zs1nnx:—a0x2—Ax—B —00< T <00
4
Im:ln n

But LHS is periodic - 27 and continuous in [—7 7| and therefore
is bounded in (—oo o0). Therefore ag =) A = 0.

8. Therefore

> a b
B = Y —cosnz+ —sinnz
n? n?
1
ap, 1 7
— = —/ —Bcosnx dx
n wJ—7
b, 1 =
—2:—/ —Bsinnx dx
n wJ—7

Therefore a,, = b, = 0.
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Theorem 27 2nd Uniqueness theorem for trig series If for all z with
1 7
a finite number of exceptions 540 + Z n ftya, cosnx + b, sinnx con-
n=1
verges to zero then ag =0a, =b,=0n>1

Lemma Riemann’s 2nd Lemma If a,, and b, — 0 as n — oo and F(t) =

F(x+h)—2F(x)+ F(x — h)

1 2 oo a
a0t =307 gcosnt—i— sin nt then lim

h—0 h
0

Proof

F(x+h)—2F(x)+ F(x —h)
h
1 i ininh)”
= —aoh+h Z nfty(a, cosnx + b, sinnx) 81111 2" )

2 n=1 inh

If ¢ > 03N||a,, cosnx + b, sinnx| < en > N.
2
Also sin® inh < (%nh) forn < 1

Let A be the upper bound of {%|a0||an cos nx + by, sin nx|}
Then

‘F(x—i—h)—ZF(x)—l—F(x—h)‘
h

< Ah+ZAh+h > €+4Zn2h
n=1

]\/'<n<1

< AN+1) h+s+—/

= A(N+1)h+€+fh
this may be made as small as we please first by choice of ¢, then by
choice of h.

Proof of Theorem 27 Theorem 26 tells us that F'(¢) is linear in the inter-
val between any two of the exceptional points, and since F' is continuous
the straight lines in adjacent intervals join. Applying Riemann’s 2nd
Lemma at the exceptional point tells us that the slopes on both sides
of this point are the same. Hence F(t) is linear throughout (—oo 00)
and the result follows as in theorem 26.
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Theorem 28 If a trigonometric series 3ag + > (a, cosnz + b, sinnz) con-
verges for all z to f(x), and f is bounded then the trigonometric series
is the Fourier series of f(x).

Lemma 1 F(z) continuous in [a b] and D*F(x) > 0 in [a b] = F(x) convex
infabie ifa<a<y<pf<b
Fla)(B =) + F(B)(y — )
8-«

In particular S =x+h o =2 — h v =z gives

F(y) <

F(x+h)+ F(z — h)
2

F(z) <
Therefore

Al =F(x+h)+F(x —h)—2F(x) >0

AR F (x)
12

ie. asDQF(x)zllliI% >0in (ab) = 5A}F(z) >0a<z<b

if h is sufficiently small.

Lemma 2 If F(x) is continuous in [a b] and if m < D?F(z) < M in (a b) and
2

A F
ifm§D2F(a:)§Min(ab)thenm§hhz(x)ﬁM D?F(x)—m >0

Therefore
1 A} (F(x) = jma?) A2F(z)
2 2 2 h
Similarly Ai}g(m) <M

Proof of Theorem 28 1. q, cosnx+b,sinnz — 0forall zasn — oo =
a, —00b, > 0asn— o

2.
F(t) = Zaot2 — n§:1 (% cosnt + 3 Sin nt>

is uniformly convergent in every finite interval and so F(t) is con-
tinuous everywhere.
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. For every given =

1 .
§a0 + suma,, cosnx + b, sinnx

converges to f(x), say therefore 3D?F(z) = f(z) therefore Ai:;(x) —
f(z)as h — 0

|F(z)| < M = <M

AL F ()
2

for all z in [—7 7] and all h sufficiently small.

AZF 1 oo sin 2nh\
th(ﬂf) = 50 + ;(an cos nx + by, sinnz) ( %;h )
1 o
= 5 + Y A, cosnz + B, sinnx

n=1

1 2 i1 2

where An =a, (%) Bn = bn <SlIi 5:h>
2" an

. For any fixed h

-1 2
sin snh 4 |A,| 4 |by,|

Anl = lag 2 — B, < 5=

Al |a|<§nh>—h2n2 1Bal < 3272

therefore > 7% A,, cosnz 4+ B,, sinnx converges uniformly with re-

spect to = in [—7 7.

Therefore
1~ A2F
Ay, = */ hh2(33) cosnx dx
mJ—7
1~ A2F
B = [ hh;@ sinna d
mwJ—7
Therefore
in 1k’ m AZF
lin% A (Slrll 2: ) = }llin(l) th(x) sin nx dzx
— 571 —UJ—-7
A2 F(x)

by— — f(x) boundedly for —7 < o < 7 as h — 0 therefore
am = = [T f(z)sinma du.
Hence the result.
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