Question

The following equations are written in terms of spherical polar co-ordinates (r, θ, ϕ) . What surfaces or curves do they represent?

- (a) $r\cos(\theta) = 1$;
- **(b)** $\sin(\theta) = \frac{\pi}{4}$;
- (c) $\theta = \frac{\pi}{2}, r \cos(\phi) = 0;$
- (d) $\theta = \frac{\pi}{4}, r \cos(\theta) = 1.$

Answer

Spherical polar co-ordinates (r, θ, ϕ) . $r \ge 0, \ 0 \le \theta \le \pi \text{ and } 0 \le \phi \le 2\pi$ with $x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi$ and $z = r \cos \theta$.

(a) $r\cos(\theta) = 1 \Rightarrow z = 1$ Since x and y are arbitrary, we have the plane parallel to the xy-plane at height z = 1.

(b) $\sin(\theta) = \frac{\pi}{4}$. Since $0 \le \theta \le \pi$ there are two solutions, $\theta \approx 51.8^{\circ}$ or $\theta = 180 - 51.8 = 128.2^{\circ}$. Each of these gives a cone:

The required curve / surface is the union of all possible solutions and so we obtain the double cone:

(c) $\theta = \frac{\pi}{2} \Rightarrow z = r \cos \frac{\pi}{2} = 0$, so the surface / curve lies in the xy-plane. $r \cos(\phi) = 0 \Rightarrow$ either r = 0 or $\cos \phi = 0$

 $\underline{r=0}$ (x,y,z)=(0,0,0) so we have the single point, the origin $\underline{\cos\phi=0,\ (r\neq0)}$ $x=r\sin\theta\cos\phi=0$ and $\cos\phi=0\Rightarrow\sin\phi=1$ or -1 so the required curve is just the y-axis.

(d) If $\theta = \frac{\pi}{4}$, $r\cos(\theta) = 1 \Rightarrow r\cos\frac{\pi}{4} = 1 \Rightarrow r = \sqrt{2}$.

Hence $z=r\cos\theta=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=1$ This gives the circle lying in the plane z=1, whose centre lies on the the z-axis. The circle has radius $r\sin\frac{\pi}{4}=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=1.$

