CONTINUED FRACTIONS

Continued functions are related to the Fuclidean algorithm. For example %

10 = 1.7+3
7 = 23+1
3 = 31
can be written as
10 3 7 1
142 =24 -
7 + 7 3 * 3
SO
10 1
g T
77T 243

We can generalise steps like this, so that instead of taking a rational number
like 1—70 we could take an irrational number «, and write

1
a=ag+ —, ap = la, ag > 1

etc.
For example

Ve = 2+ (vV6-2)
L Ve+2 o V62

= 2
V6 —2 2 + 2

2 V6 + 2
\/6—2:2' . =V6+2=4+(V6-2)

the process then repeats.

So

Periodic from the first step onwards.



We clearly nee a better notation. Several have been in use over the years.

1 1 1. 1
= 2&—&—&—&—& ...
V6 &2.&4.&2.&4.&
o, L1
o 24+ 4424
= [2:;2,4,2,4..]

= [%2,4]

To work with continued functions I need to establish some fundamental for-
mulae.
Consider the continued function

1 1
where the a; for the present could be thought of as variables (real, com-
plex...). If we consider the finite fraction

ag +

this will be a rational function in the variables, which we shall write as 3;—".
Evaluating the first few values
aozg—SSOPo:aU, qo =1

i 1
ap+ - = U 50 py = g +1 1 = @y

al

1 1 apa1az +ag +az _ P

Qo + - =
a1+ ag ajas + 1 q2
I 1 1 aaiazas + apaz + agaz + apay + 1
a0+(ll—+612_+&_3 - a1a2a3 + az + ay
_as(aparag + ag + az) +apay +1 P3
- az(aras + 1) + a; @

SO p3 = azp2 + P1 q3 = a3q2 + q1
This pattern generalises, and we have

Pn+1 = Qn1Pn + Pn—1

dn+1 = a'n+1Qn+Qn—1

Proof By induction



DPn 1 1 1 AnPn — 1 + Pn—2
g —— . — =
dn CL1—|— CL2+ Qp, AnQn—1 + Gn—2

: 1 : Pn+1
Now if we replace a,, by a, + o We obtain e
SO

Pnt1 _ (an + ﬁ) Pn—-1+ Pn—2
In+1 (an + ﬁ) g1 + Gn_s

Pn—1
AnPn—1 + Pn—2 + Ani1

dn—1
nQn—1 + Qn-1 + CLZ+1
Qn+1Pn T Pn—1

Unt+19n + Gn-1

The formulae we developed initially gives

n =2 P2 = a2p1 + Po, G2 = a2q1 + qo

n =1 would read p; = a1po + p_1, ¢1 = a1qo + q_1
Now this requires

apa; +1 = ayag+p_y, p-1 =1
ap = a.l+q1, ¢1=0

So if we conventionally set p_1 =1 ¢_; = 0 then these formulae are fine for
n=12,...

If the a; are positive integers we can use these recurrence relations to work
out E2 successively, without having to “add up from the back end” each time.

dn
1 1 1 1
n —1 0 1 2 3 4 5)
an 3 7 15 1 292 1

pn 1 3 22 333 355 103933 104288
¢ 0 1 7 105 113 33102 33215
Now as a decimal m = 3.141592653897932. ..
B p=1 3.
n=2 3.142857. ..
n=3 3.14150943. . .
n=4  3.14159292...
n=>5 3.14159265301. ..
Since the a; are positive integers, we have

qn

DPn 2 Pn—1 +pn—27 An Z Gn—1 + Gn—1

3



with equality if and only if a, = 1

The minimum possible values for ¢, and p,, therefore occur if all the a,,’s are
1.

In that case

p-1=1, po=1and p, =py1+pn

go=1land ¢y =1and ¢, = ¢p1 + G2

S0 gy, is the n th term in the Fibonacci sequence and p,, is the (n+ 1)th term
in the Fibbonacci sequence.

iLe. for 1+ - jﬁ . we have
n -1 O 1 2 3 4 5
n, 1 11 1 1 1
p, 1 1 2 3 5 8 13
g 0 1 1 2 3 5 8

f]ﬁ — golden rat1o.

n

fz=1+ ﬁﬁ . then (without worrying about convergence) x = 1 + %

So 2 —x—l—(), x:%*/gandx>080x:1+7‘@.
More identities

1.
Prndn-1 — Pn—-14n = (_1)77,—1

Prdn-1 — Pn—2qn = (—1)"an

1. Again by induction

Prn+149n — Pndn+1
(@nDn + Prn-1)qn — Pr(@nGn + Gn-1)
= _(pnqnfl - pnflqn)

n=1:pi1q — poq1 = (apar +1).1 —ag.a; = 1

2.
Prnln—2 — Pn—24n
= (anpnfl + pn72>Qn72 - pn72<OJTLQn71 + Qn72>
- an(pn—lQn—? - Qn—lpn—Q) = an<_1)n
by 1.



These formula can also be written in the form

DPn _ Prn—1 o (_1)71—1

dn dn—1 qndn—1

DPn o Pn—2 o (_1>nan

dn qn—2 qndn—2

Now suppose the a,,’s are positive real numbers. For n even, since the ¢’s are
all positive

For n odd

So this gives

R N Y

qo q2 q4 de qs q3 q1



