QUESTION

(a) Consider the linear programming problem

maximize
$$\sum_{j=1}^{n} c_j x_j$$
subject to
$$x_j \ge 0 \qquad j = 1, \dots, n$$
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad i = 1, \dots, m,$$

where the constraint matrix $A = (a_{ij})$ has rank m, and m < n. Prove that a basic feasible solution is an extreme point of the convex set of feasible solutions.

- (b) Give a brief explanation of the term *cycling* in the simplex method, and describe two methods by which cycling can be avoided.
- (c) Explain what is meant by *soft* constraints, and indicate how they are incorporated into a linear programming problem.
- (d) Find and evaluate all basic feasible solutions of the linear programming problem

$$\begin{array}{ll} \text{maximize} & z = 5x_1 + 7x_2 + 4x_3 + 9x_4 \\ \text{subject to} & x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0, \ x_4 \geq 0 \\ & x_1 + x_2 + 2x_3 - 5x_4 = 4 \\ & 3x_1 + 5x_2 - 2x_3 + x_4 = 8. \end{array}$$

Verify that if the vector (x_1, x_2, x_3, x_4) is a feasible solution, then the vector $(x_1 + 1, x_2, x_3 + 2, x_4 + 1)$ is also a feasible solution. What can you conclude about the problem?

ANSWER

(a) Assume that the variables of the LP problem are \mathbf{x} and the constraints are $\mathbf{x} \geq \mathbf{0}$ and $A\mathbf{x} = \mathbf{b}$. Let $\mathbf{x} = \begin{pmatrix} \mathbf{x}^B \\ \mathbf{x}^N \end{pmatrix}$ $A = (A^B A^N)$, so that constraints are

$$A^B \mathbf{x}^B + A^N \mathbf{x}^N = \mathbf{b}$$

Let $\mathbf{x}^B = A_B^{-1}(\mathbf{b} - A^N \mathbf{x}^N)$ define a basic feasible solution $\mathbf{x}^B = A_B^{-1} \mathbf{b} \mathbf{x}_N = \mathbf{0}$. Suppose

$$\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \tag{1}$$

for feasible solutions $\mathbf{x}_1, \mathbf{x}_2$, where $\mathbf{x}_1 \neq \mathbf{x}_2$ and $0 < \lambda < 1$.

Let
$$\mathbf{x}_1 = \begin{pmatrix} \mathbf{x}_1^B \\ \mathbf{x}_1^N \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} \mathbf{x}_2^B \\ \mathbf{x}_2^N \end{pmatrix}$. From (1), $\mathbf{x}_1^N = \mathbf{x}_2^N = \mathbf{0}$, since otherwise $\mathbf{x}^N \neq \mathbf{0}$. For feasibility,

$$A^B \mathbf{x}_1^B = \mathbf{b}$$
 giving $\mathbf{x}_1^B = (A^B)^{-1} \mathbf{b}$
 $A^B \mathbf{x}_2^B = \mathbf{b}$ giving $\mathbf{x}_2^B = (A^B)^{-1} \mathbf{b}$

Thus $\mathbf{x}_1^B = \mathbf{x}_2^B$ to give $\mathbf{x}_1 = \mathbf{x}_2$, which contradicts the initial assumption $\mathbf{x}_1 \neq \mathbf{x}_2$.

- (b) Cycling occurs when a previously generated tableau reappears at some later iteration. To avoid cycling
 - perturbation: add the vector $(\epsilon, \epsilon^2, \dots, \epsilon^m)$ for small positive ϵ to the right hand sides to avoid degeneracy.
 - Bland's smallest subscript rule: the pivot column is the one with a nagative x coefficient which has the smallest subscript on the variable; for equal smallest ratios, choose a row containing a basic variable with the smallest subscript.
- (c) Soft constraints are ones which should preferably be satisfied, but can be varied at a cost. A soft constraint

$$a_{i1}x_1 + \dots a_{in}x_n = b_i$$

is replaced by

$$a_{i1}x_1 + \ldots + a_{in}x_n + u_i - v_i = b_i \ u_i > 0, \ v_i > 0$$

and a contribution $\alpha_o u_i + \beta_i v_i$ for suitable chosen α_i, β_i is added to the cost in the objective function.

	Basic	Value	Feasible	z
	x_1, x_2	6, -2	No	
	x_1, x_3	$3, \frac{1}{2}$	Yes	17
(d)	x_1, x_4	$\frac{11}{4}, -\frac{1}{4}$	No	
	x_12, x_3	2,1	Yes	18
	x_2, x_4	$\frac{22}{13}, -\frac{6}{13}$	No	
	x_3, x_4	$-\frac{11}{2}, -3$	No	

$$(x_1 + 1) + x_2 + 2(x_3 + 2) - 5(x_4 + 1)$$

$$= x_1 + x_2 + 2x_3 - 5x_4 = 4$$

$$3(x_1 + 1) + 5x_2 - 2(x_3 + 2) + (x_4 + 1)$$

$$= 3x_1 + 5x_2 - 2x_3 + x_4 = 8$$

The objective function value of the solution is

$$s(x_1 + x) + 7x_2 + 4(x_3 + 2) + 9(x_4 + 1) = 5x_1 + 7x_2 + 4x_3 + 9x_4 + 22$$

Since any feasible solution can be increased by 22 without affecting feasibility, the problem is unbounded.