Complex Numbers

Geometrical Transformations in the Complex Plane

For functions of a real variable such as f(z) = sinx, g(z) = 2?+2 etc you are
used to illustrating these geometrically, usually on a cartesian graph. If we
have functions of a complex variable given by equations such as w = sin z or
w = 2% +2 we cannot use a cartesian graph, since z cannot be represented on
an ordered axis. Indeed z may range over the whole of the two dimensional
complex plane, so that if w is also complex we would need a 4-dimensional
space to plot a graph such as w = 22 + 2. Most of us cannot visualise this,
and what we usually do is to have two copies of the complex plane, and we
look at points in the z-plane and see how they are transformed into points in
the w-plane. We also look at sets of points, curves or regions in the z-plane
and their images in the w-plane.
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Examples

1) w = f(2) = z+ 2. This simply shifts every point two units in the
direction of the real axis - it is a translation.
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2) w = z+ 2 — i, again a translation
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z—2z+2—1
D C A’ B’
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w — plane
3) w =7z + 2, this is not a translation.
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4) w =2z Now |w| = 2|z| argw = arg2 + argz = arg 2

So this is an enlargement about the origin with scale factor 2.
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5) w=1iz |w|=|z] argw = argi+argz = g—l—argz

So this is a rotation through 7 anticlockwise about O.
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z =1z
D C A D'
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In general if o is any complex number and we write o = re? then w = az is
an enlargement by scale factor r together with a rotation about O through
the angle # anticlockwise.

If we write
a = a+ib
z = T+
w o= u-+1w

then w = az
becomes u + iv = (a + 1b)(z + iy)
and so
u = axr—by

v = bxr+ay

Wewritethisintheform<u>:<a _b> (x)
v b a Y

The right hand side can be interpreted as a multiplication, but at the moment
it seems a rather odd kind of multiplication.

We call ( ; ) a column vector.

b
If we now have another transformation £ = Sw where 8 = ¢ + id then if we
write £ = s 4 1t we shall have

()= ()

We call ( @ _ab > a matrix.



If we now do the substitutions
s =cu—dv
t=du+cv
in the first pair of equations we get
s = (ca—db)x — (cb+ da)y
t = (ad + bc)x + (ac — bd)y
( s > B ( (ca —bd) —(cb+ da) > ( a:)
t )\ (ad+bc) (ac—bd) y
This suggests that we should define
c —d a —b\ [ (ca—0bd) —(cb+ da)
d c b a )\ (ad+bc) (ac—0bd)
Finally if we go back to the original equation w = az v = fw we obtain
§ = Paz and Pa = (¢ +id)(a + ib) = (ac — bd) + i(ad + bc)
If we write a and 3 in polar form, taking » = 1 for both, so that they both
correspond to rotations, we then have
o = cost +isinf
= cos ¢+ ising
The corresponding matrices are
cosf) —sinf cos¢ —sing
sinf  cos@ sing  cos ¢
[ cosfcos¢p —sinfsing —(cosfsin¢ + sin b cos ¢)
~ |\ sinfcos¢+ cosflsing  cosfcos@ — sinfsin ¢
[ cos(+¢) —sin(0+ )
~ \ sin(@+¢) cos(6+ o)
which is in accordance with what we found previously.

Notice that although each complex number can be represented by a matrix,
: 1 1
matrices such as ( do not correspond to complex numbers. We can

0 1
nevertheless use them to transform the plane.

o) (7)- (")

This corresponds to a shearing transformation.
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In considering matrices used as transformations we have so far considered
the problem of finding the image of given points.

()= (v)
e amen 7 ) s ()

We now consider the reverse problem:

sven (3 J i ()
(ca)(5)-(3)

ar+by = X (1)
ce+dy =Y (2)
(1) *d and (2) b=
adr +bdy = dX
bcx +bdy = bY
subtracting gives

(ad —bc)x = dX —bY (3)
(1) *xcand (2) xa =
acx +bcy = cX

acr +ady = aY
subtracting gives

(ad—be)y = aY —cX (4)

(3) and (4) can be solved for x and y iff ad — be # 0. If ad — bc # 0 we then
have

b

X —
ad — be ad — be
—c a
= X
y ad — be +ad—bc

SO

Y

Tr =

Y




d —b

( r ) — ( ad—bc  ad—bc
—c a

Y ad—bc  ad—bc

. d =D
A\ —¢ a

The matrix
d  —b

A A
< a
A A

is called the inverse of A = ( CCL 2 ) written A1

10

0 1

As a transformation this matrix does nothing at all. All points are fixed. It
is called the identity matrix.

A = ad — bc is called the determinant of A. So A has an inverse iff its
determinant is non-zero.

For a complex number matrix

(a —b) A =a*+b*=|a
o =

AA =

b a A=0ifa=b=0 ie.a=0
and its inverse is
1 a b o] 1
N T T

In widening the system to include all possible 2 x 2 matrices we have in-
cluded many matrices which do not have inverses. We have also sacrificed
commutativity of multiplication, as AB does not always equal BA.
However we can deal with many different transformations, and matrices turn
out to have many and varied applications.

Other transformations

There are many transformations not represented by 2 x 2 matrices as above.
As an example we consider a few properties of the transformation w = 22. It
is convenient to use polar co-ordinates, we use (r,6) in the z-plane and (p, ¢)
in the w-plane.



z-plane w-plane

Ce B o5
5 — il 52— 2020
® ° = r2 3 3
D o= C=E | A=D
¢ =20
Ee
A(1,0) A'(1,0)
B(v2,7) B'(2,3
C(1,% C'(1,)
D(1,m D'(1,2m) = (1,0)
E(1, 37“ E'(1,37) = (1,7)
DIAGRAM
soz=e — 1 <6 <7 corresponds to a circle traced twice in the w-plane.
DIAGRAM
z-plane w-plane

w=1r2e* () <20 < 27
:pei90<¢)<2ﬂ- ................

// soz=re? 0<0<n //

upper half plane y > 0 plane without +ve real axis

Reverting to cartesians now let z = x +1y w =& 41
E+in =2 —y? + 2izy so £ = 2% —y? n= 2wy
Nowifx =1, £=1—9> n=2y

2
soﬁzl—%
DIAGRAM )
Ify=1¢&=a22-1 n:2xso§:nz—1
DIAGRAMS



