Complex Numbers

History

“The historical development of complex number”D.R.Green Mathematical
Gazette June 1976 pp99-107.

In N we cannot solve x +2 =1

In Z we cannot solve 2x = 1

In Q we cannot solve 22 = 2

In R we cannot solve 22 4+ 1 =0

You have all done some work on complex numbers, and this introduction is
in the spirit of the construction from Z to Q.

Definition
A complex number is an ordered pair (z,y) of real numbers, with addition
and multiplication defined by

(z,y) + (2",y) = (@+2",y+)
(z,y).(2",y) = (22’ —yy', zy +ya')

With these definitions the complex number system C has all the properties
of a field. Now we have

(2,0) + (2/,0) = (z+2,0)
(z,0)(2',0) = (z2',0)

so there is a subsystem which behaves like R.
(0,1)(0,1) = (=1,0)

(z,y) = (£,0) + (0,y) = (2,0) + (y,0)(0, 1)

We shall abbreviate (z,0) to x and (0, 1) to 1.

So we write (x,y) = x + yi

x is called the real part of the complex number.

y is called the imaginary part of the complex number.
Using this new symbolism we have:

(x+yi)+ @ +yi)=(@+a)+ (y+y)

(@ +yi) (2" + y'i) = (z2’ — yy') + (zy + ya')i

The Complex Plane

We can represent x + yi as a point in the plane with coordinates (x,y).
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Imaginary axis

T Real axis

If we write z = x 4 yi then we have x = r cos 6 y =rsind
So z = r(cosf + isinf) - Polar form of z.

r is called the modulus of z; |z| = /(22 + y2)

0 is called the argument of z; arg z it satisfies tanf = Y

x
There are many values of 0 satisfying tanf = 2. The value of 0 is taken to

satisfy —m < 6 < 7 and this is called the principal argument of z.
So

arg(l+1i) = %
arg i = 5
arg —1 = 7
3
arg(—1—1i) = —Zﬂ

Note that to say 6 = tan™" Y is not correct, for it does not distinguish
x
14¢ (z=y=1) from -1 —i (x =y =—1).
Addition in the complex plane is interpreted geometrically through the par-
allelogram law.



Triangle inequality |z + 2/| < |z| 4 |#/]
Example

Prove from the triangle inequality that
lz] = [2']] < |z + 2]

2| = |2l = |(z+ 2) = 2| = |Z'] < [z + 2| + |2 =[] = [2 + 7]
Similarly || — |z] < |2' + z|
Thus ||z] — ||| < |z + #/|

Multiplication is best approached using the polar form.

Let z = r(cos @ + isinf); 2 =1'(cos® +isinf')

Multiplying it is easily verified that zz" = r1’'(cos(6 + 0') + isin(6 + ¢'))
Thus we have |zZ/| = rr’ = |z||2/|

arg zz' = argz + arg 2’ (mod27)

Exercise
Prove by induction that |2"| = |z|"
arg 2" = nargz (mod2r) ne N

If m=—n neN

Then 2™z" =1 So |2™||z"] =1

ie. [2"||]z|" =1

m’ —

=l

so |z =
2"



Exercise

Prove that if m = —n ne N

then arg 2™ = m arg z mod2mr

The most important feature of the complex number system is that not only
does 22 + 1 = 0 have a solution in C, but all polynomial equations have
solutions in C.

This fact was first given a complete proof by Gauss in 1799.

Fundamental Theorem of Algebra

Let p(2) = ag + a1z + az2® + ... + a,2" a;cC

Then the equation p(z) = 0 has a solution in C

It follows that if ¢ is a such solution then p(2) = (z—¢)(bg+byz+...4+bp_12" )
Exercise

Try to prove this.

Corollary

p(z) can be expressed as a product of n linear factors.

p(2) = an(z —c1)(z — ¢2)...(2 — ¢,) where some of the ¢; may be equal. Thus
every polynomial has at most n roots in C.

Proof by induction is left as an exercise.

Examples
2 +1 irreducible over R
?+1 = (z+i)(x—1) over C
3 — 2?4+ 20 —2 (x —1)(2? 4+ 2) over R
2} 224+ 20 -2 = (z—1)(z+ivV2)(x —iv/2) over C

Complex conjugates
Let 2z = x + iy. Then we define the complex conjugate of z to be Z or
Zr=x—1y
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Properties

z+w=z+w direct verification

)

i) zw =z direct verification
) 2" =(Z)" from ii) by induction
)

iv) If p is a polynomial p(z) = ag + a1z + ... + a,2"

p(z) =g+ @7 + @Z* + ... + @, 2"

This result is used to prove that if z is a root of a polynomial with real
coefficients then Z is also a root. For in this case if a;¢ R then @; = a;.

So p(z) = p(2)

Thus if p(z) =0 p(z) = 0 also.

So for a real polynomial all the complex roots have corresponding conjugates.
Thus a real polynomial of odd degree must have at least one real root.

v) 27 = (2 +iy)(x —iy) = 2° + y°

This is useful in such situations as
3+4i  (3440)(2+1) 2+1L

2—1 ) )
vi) Z—gz:Rez:x
Z—Z

:.I :‘
5 1Im z =1y



De Moivre’s Theorem
(cos @ + isinf)" = cosnf + isinnd
Proof by induction left as an exercise.

The roots of unity
We consider the equation 2" = 1.
If z=r(cosf + isinf)
2" = r"(cosnb + isinnh)
So r™ = 1 which gives r = 1, and cosnf = 1.
2r 4 2n — 2
This gives 6 = 0, —W, —W, o @n=2r
n' n
Thuskthe solutions of 2™ =1 are
cos il + 7 sin il k=0,1,..n — 1 and these are all different.
n n
For example take n = 3 the roots of 23 = 1 are
T, 2w .. A
1, cos — +isin 30 cos4m3 + isin —

. 143 —1-—+/3i

They lie at the vertices of a regular triangle on the unit circle in the complex
plane.

i
N

In general the n-th roots of unity lie at the vertices of a regular n-gon.

Exercise

Let the cube roots of unity be denoted by 1, wy, wy. Prove that w? = w,
and w3 = w.

Prove that w;, w?, w? are all different, and ws, w3, w3 are all different, and
each set is a permutation of 1, wy, ws. Investigate this situation for n = 5,8
and then see if you can make any general statements for the n-th roots of
unity.

Useful in this exercise might be:

Euler’s formula



Assuming the series for
2 3

z _ r T
e —1+x+2!+3!+...
2 ot 2
COS$:1_§+I_a+"'
3 x® aT
sinx:x——|+—'——‘+...

Replace x by iz in the first and separate the resulting series into real and
imaginary parts to verify that

e = cosx +isinx

Then using e = cosz — isinz

1 . .
We obtain cosxz = 5(6”” +e')

1 . )
sine = — (e —e™")
i
These look like the formula for hyperbolic functions. Investigate this con-

nection further.
Euler’s formula enables us to deal with the roots of unity more concisely.

. 2kmr .. 2kmw ;2hm
Since cos — +1sin — = ¢' ' »
n n
we can obtain them as follows
oM =1= 627ri — €4m’ = = 62km’
2kmi
Soz=¢n

The formula with DeMoivre’s theorem is useful in summing series and eval-
uating integrals.



