
Complex Numbers

History

“The historical development of complex number”D.R.Green Mathematical
Gazette June 1976 pp99-107.
In N we cannot solve x+ 2 = 1
In Z we cannot solve 2x = 1
In Q we cannot solve x2 = 2
In R we cannot solve x2 + 1 = 0
You have all done some work on complex numbers, and this introduction is
in the spirit of the construction from Z to Q.

Definition

A complex number is an ordered pair (x, y) of real numbers, with addition
and multiplication defined by

(x, y) + (x′, y′) = (x+ x′, y + y′)

(x, y).(x′, y′) = (xx′ − yy′, xy′ + yx′)

With these definitions the complex number system C has all the properties
of a field. Now we have

(x, 0) + (x′, 0) = (x+ x′, 0)

(x, 0)(x′, 0) = (xx′, 0)

so there is a subsystem which behaves like R.
(0, 1)(0, 1) = (−1, 0)
(x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0)(0, 1)
We shall abbreviate (x, 0) to x and (0, 1) to i.
So we write (x, y) = x+ yi

x is called the real part of the complex number.
y is called the imaginary part of the complex number.
Using this new symbolism we have:
(x+ yi) + (x′ + y′i) = (x+ x′) + (y + y′)i
(x+ yi)(x′ + y′i) = (xx′ − yy′) + (xy′ + yx′)i
The Complex Plane

We can represent x+ yi as a point in the plane with coordinates (x, y).
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If we write z = x+ yi then we have x = r cos θ y = r sin θ
So z = r(cos θ + i sin θ) - Polar form of z.

r is called the modulus of z; |z| =
√

(x2 + y2)

θ is called the argument of z; arg z it satisfies tan θ =
y

x
There are many values of θ satisfying tan θ = y

x
. The value of θ is taken to

satisfy −π < θ ≤ π and this is called the principal argument of z.
So
arg(1 + i) =

π

4
arg i =

π

2
arg−1 = π

arg(−1− i) = −3π
4

Note that to say θ = tan−1
y

x
is not correct, for it does not distinguish

1 + i (x = y = 1) from −1− i (x = y = −1).
Addition in the complex plane is interpreted geometrically through the par-
allelogram law.
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Triangle inequality |z + z′| ≤ |z|+ |z′|

Example

Prove from the triangle inequality that
||z| − |z′|| ≤ |z + z′|

|z| − |z′| = |(z + z′)− z′| − |z′| ≤ |z + z′|+ |z′| − |z′| = |z + z′|
Similarly |z′| − |z| ≤ |z′ + z|
Thus ||z| − |z′|| ≤ |z + z′|

Multiplication is best approached using the polar form.
Let z = r(cos θ + i sin θ); z′ = r′(cos θ′ + i sin θ′)
Multiplying it is easily verified that zz ′ = rr′(cos(θ + θ′) + i sin(θ + θ′))
Thus we have |zz′| = rr′ = |z||z′|
arg zz′ = arg z + arg z′ (mod2π)

Exercise

Prove by induction that |zn| = |z|n
arg zn = n arg z (mod2π) nε N

If m = −n nεN

Then zmzn = 1 So |zm||zn| = 1
i.e. |zm||z|n = 1
so |zm| = 1

|z|n = |z|
m
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Exercise

Prove that if m = −n nε N

then arg zm = m arg z mod2π
The most important feature of the complex number system is that not only
does x2 + 1 = 0 have a solution in C, but all polynomial equations have
solutions in C.
This fact was first given a complete proof by Gauss in 1799.

Fundamental Theorem of Algebra

Let p(z) = a0 + a1z + a2z
2 + ...+ anz

n aiεC

Then the equation p(z) = 0 has a solution in C
It follows that if c is a such solution then p(z) = (z−c)(b0+b1z+...+bn−1z

n−1)
Exercise

Try to prove this.
Corollary

p(z) can be expressed as a product of n linear factors.
p(z) = an(z− c1)(z− c2)...(z− cn) where some of the ci may be equal. Thus
every polynomial has at most n roots in C.
Proof by induction is left as an exercise.

Examples
x2 + 1 irreducible over R
x2 + 1 = (x+ i)(x− i) over C

x3 − x2 + 2x− 2 = (x− 1)(x2 + 2) over R

x3 − x2 + 2x− 2 = (x− 1)(x+ i
√
2)(x− i

√
2) over C

Complex conjugates

Let z = x + iy. Then we define the complex conjugate of z to be z or
z∗ = x− iy
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Properties

i) z + w = z + w direct verification

ii) zw = zw direct verification

iii) zn = (z)n from ii) by induction

iv) If p is a polynomial p(z) = a0 + a1z + ...+ anz
n

p(z) = a0 + a1z + a2z
2 + ...+ anz

n

This result is used to prove that if z is a root of a polynomial with real
coefficients then z is also a root. For in this case if aiε R then ai = ai.
So p(z) = p(z)
Thus if p(z) = 0 p(z) = 0 also.
So for a real polynomial all the complex roots have corresponding conjugates.
Thus a real polynomial of odd degree must have at least one real root.

v) zz = (x+ iy)(x− iy) = x2 + y2

This is useful in such situations as
3 + 4i

2− i
=
(3 + 4i)(2 + i)

5
=
2 + 11i

5

vi)
z + z

2
= Re z = x

z − z

2
= i Im z = iy
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De Moivre’s Theorem

(cos θ + i sin θ)n = cosnθ + i sinnθ
Proof by induction left as an exercise.

The roots of unity

We consider the equation zn = 1.
If z = r(cos θ + i sin θ)
zn = rn(cosnθ + i sinnθ)
So rn = 1 which gives r = 1, and cosnθ = 1.

This gives θ = 0,
2π

n
,
4π

n
, ...,

(2n− 2)π
n

Thus the solutions of zn = 1 are

cos
2kπ

n
+ i sin

2kπ

n
k = 0, 1, ...n− 1 and these are all different.

For example take n = 3 the roots of z3 = 1 are

1, cos
2π

3
+ i sin

2π

3
, cos 4π3 + i sin

4π

3

1,
−1 +

√
3i

2
,
−1−

√
3i

2
They lie at the vertices of a regular triangle on the unit circle in the complex
plane.

"!
#Ãsss

In general the n-th roots of unity lie at the vertices of a regular n-gon.

Exercise

Let the cube roots of unity be denoted by 1, w1, w2. Prove that w
2
1
= w2

and w2
2
= w1.

Prove that w1, w
2
1
, w3

1
are all different, and w2, w

2
2
, w3

2
are all different, and

each set is a permutation of 1, w1, w2. Investigate this situation for n = 5, 8
and then see if you can make any general statements for the n-th roots of
unity.
Useful in this exercise might be:

Euler’s formula
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Assuming the series for

ex = 1 + x+
x2

2!
+
x3

3!
+ ...

cos x = 1− x2

2!
+
x4

4!
− x6

6!
+ ...

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ ...

Replace x by ix in the first and separate the resulting series into real and
imaginary parts to verify that
eix = cos x+ i sinx
Then using e−ix = cos x− i sinx

We obtain cos x =
1

2
(eix + e−ix)

sinx =
1

2i
(eix − e−ix)

These look like the formula for hyperbolic functions. Investigate this con-
nection further.
Euler’s formula enables us to deal with the roots of unity more concisely.

Since cos
2kπ

n
+ i sin

2kπ

n
= ei

2kπ

n

we can obtain them as follows
zn = 1 = e2πi = e4πi = ... = e2kπi

so z = e
2kπi

n

The formula with DeMoivre’s theorem is useful in summing series and eval-
uating integrals.
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